The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

RAS1  -  Ras family GTPase RAS1

Saccharomyces cerevisiae S288c

Synonyms: Ras-like protein 1, YOR101W, YOR3205W
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of RAS1


High impact information on RAS1

  • We showed previously that Yin6 cooperates with Ras1 to mediate chromosome segregation; here, we demonstrate that Ras1 similarly regulates the proteasome via Rpn5 [5].
  • The lethality resulting from disruption of the CDC25 gene can be suppressed by the presence of the activated RAS2val19 gene, but not by high copy plasmids expressing a normal RAS2 or RAS1 gene [6].
  • In contrast to the S. cerevisiae RAS1 and RAS2 gene products, the YPT protein seems to be involved, directly or indirectly, in microtubule organization and function [7].
  • We have analyzed the function of the only ras homolog in S. pombe detectable by Southern blotting, ras1, which is homologous to mammalian ras genes and has been cloned [8].
  • The cell body of a ras1- strain is extensively deformed, and a ras1-/ras1- diploid sporulates very poorly [8].

Biological context of RAS1

  • We present a genetic analysis of RAS1 and RAS2 of S. cerevisiae, two genes that are highly homologous to mammalian ras genes [9].
  • By constructing in vitro ras genes disrupted by selectable genes and introducing these by gene replacement into the respective ras loci, we have determined that neither RAS1 nor RAS2 are by themselves essential genes [9].
  • The yeast RAS1 and RAS2 genes appear to be involved in control of cell growth in response to nutrients [10].
  • TS1 cells accumulate as unbudded cells upon temperature shift from 30 to 37 degrees C, thus showing that the RAS1 and RAS2 gene functions are important for progression through the G1 phase of the cell cycle [11].
  • At low levels of expression, a dominant activated phenotype, characterized by low glycogen levels and poor sporulation efficiency, was observed for both full-length RAS1 and RAS2 variants having impaired GTP hydrolytic activity [12].

Anatomical context of RAS1


Associations of RAS1 with chemical compounds


Physical interactions of RAS1


Regulatory relationships of RAS1

  • A mutant allele of RAS1 that dominantly interferes with the wild-type Ras function in the yeast Saccharomyces cerevisiae was discovered during screening of mutants that suppress an ira2 disruption mutation [21].
  • Candida albicans Ras1 is speculated to similarly activate Cdc35, the orthologue of Cyr1, for hyphal development [20].
  • Ras1-induced hyphal development in Candida albicans requires the formin Bni1 [22].
  • When ammonium is absent or present at low concentrations, Mep2p activates both the Cph1p-dependent mitogen-activated protein (MAP) kinase pathway and the cAMP-dependent signalling pathway in a Ras1p-dependent fashion via its C-terminal cytoplasmic tail, which is essential for signalling but dispensable for ammonium transport [23].

Other interactions of RAS1

  • Differential activation of yeast adenylyl cyclase by Ras1 and Ras2 depends on the conserved N terminus [24].
  • We also show that a-factor, RAS1 and RAS2 are physiological methyl-accepting substrates for this enzyme by demonstrating that these proteins are not methylated in a ste14 null mutant [25].
  • Genetic analysis suggests that S. pombe Gap1 functions primarily as a negative regulator of Ras1, like S. cerevisiae GAP homologs encoded by IRA1 and IRA2, but is unlikely to be a downstream effector of the Ras protein, a role proposed for mammalian GAP [2].
  • Epistatic interactions indicate that the ste6 gene functions upstream of ras1 [26].
  • Glucose-induced 32P incorporation into inositolphospholipids and formation of [3H]inositol phosphates were more pronounced in RAS-related mutants such as ras1, ras1 ras2 bcy1, and RAS2Val19 than in the wild-type strain [27].

Analytical, diagnostic and therapeutic context of RAS1


  1. Heat stress-induced life span extension in yeast. Shama, S., Lai, C.Y., Antoniazzi, J.M., Jiang, J.C., Jazwinski, S.M. Exp. Cell Res. (1998) [Pubmed]
  2. Identification of a GTPase-activating protein homolog in Schizosaccharomyces pombe. Imai, Y., Miyake, S., Hughes, D.A., Yamamoto, M. Mol. Cell. Biol. (1991) [Pubmed]
  3. RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Alspaugh, J.A., Cavallo, L.M., Perfect, J.R., Heitman, J. Mol. Microbiol. (2000) [Pubmed]
  4. Rapamycin specifically interferes with the developmental response of fission yeast to starvation. Weisman, R., Choder, M., Koltin, Y. J. Bacteriol. (1997) [Pubmed]
  5. Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome. Yen, H.C., Gordon, C., Chang, E.C. Cell (2003) [Pubmed]
  6. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Broek, D., Toda, T., Michaeli, T., Levin, L., Birchmeier, C., Zoller, M., Powers, S., Wigler, M. Cell (1987) [Pubmed]
  7. The ras-related YPT1 gene product in yeast: a GTP-binding protein that might be involved in microtubule organization. Schmitt, H.D., Wagner, P., Pfaff, E., Gallwitz, D. Cell (1986) [Pubmed]
  8. Role of a ras homolog in the life cycle of Schizosaccharomyces pombe. Fukui, Y., Kozasa, T., Kaziro, Y., Takeda, T., Yamamoto, M. Cell (1986) [Pubmed]
  9. Genetic analysis of yeast RAS1 and RAS2 genes. Kataoka, T., Powers, S., McGill, C., Fasano, O., Strathern, J., Broach, J., Wigler, M. Cell (1984) [Pubmed]
  10. GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. Xue, Y., Batlle, M., Hirsch, J.P. EMBO J. (1998) [Pubmed]
  11. Suppression of defective RAS1 and RAS2 functions in yeast by an adenylate cyclase activated by a single amino acid change. De Vendittis, E., Vitelli, A., Zahn, R., Fasano, O. EMBO J. (1986) [Pubmed]
  12. Regulatory function of the Saccharomyces cerevisiae RAS C-terminus. Marshall, M.S., Gibbs, J.B., Scolnick, E.M., Sigal, I.S. Mol. Cell. Biol. (1987) [Pubmed]
  13. A novel yeast mutant defective in the processing of ras proteins: assessment of the effect of the mutation on processing steps. Fujiyama, A., Matsumoto, K., Tamanoi, F. EMBO J. (1987) [Pubmed]
  14. Processing and fatty acid acylation of RAS1 and RAS2 proteins in Saccharomyces cerevisiae. Fujiyama, A., Tamanoi, F. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  15. Moe1, a conserved protein in Schizosaccharomyces pombe, interacts with a Ras effector, Scd1, to affect proper spindle formation. Chen, C.R., Li, Y.C., Chen, J., Hou, M.C., Papadaki, P., Chang, E.C. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  16. Farnesyl cysteine C-terminal methyltransferase activity is dependent upon the STE14 gene product in Saccharomyces cerevisiae. Hrycyna, C.A., Clarke, S. Mol. Cell. Biol. (1990) [Pubmed]
  17. Yeast alpha-mating factor receptor and G-protein-linked adenylyl cyclase inhibition requires RAS2 and GPA2 activities. Papasavvas, S., Arkinstall, S., Reid, J., Payton, M. Biochem. Biophys. Res. Commun. (1992) [Pubmed]
  18. Isolation and characterization of temperature-sensitive mutations in the RAS2 and CYR1 genes of Saccharomyces cerevisiae. Mitsuzawa, H., Uno, I., Oshima, T., Ishikawa, T. Genetics (1989) [Pubmed]
  19. Requirement of Saccharomyces cerevisiae Ras for completion of mitosis. Morishita, T., Mitsuzawa, H., Nakafuku, M., Nakamura, S., Hattori, S., Anraku, Y. Science (1995) [Pubmed]
  20. RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Fang, H.M., Wang, Y. Mol. Microbiol. (2006) [Pubmed]
  21. A dominant interfering mutation in RAS1 of Saccharomyces cerevisiae. Fujimura, K., Tanaka, K., Toh-e, A. Mol. Gen. Genet. (1993) [Pubmed]
  22. Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Martin, R., Walther, A., Wendland, J. Eukaryotic Cell (2005) [Pubmed]
  23. The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Biswas, K., Morschhäuser, J. Mol. Microbiol. (2005) [Pubmed]
  24. Differential activation of yeast adenylyl cyclase by Ras1 and Ras2 depends on the conserved N terminus. Hurwitz, N., Segal, M., Marbach, I., Levitzki, A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  25. The Saccharomyces cerevisiae STE14 gene encodes a methyltransferase that mediates C-terminal methylation of a-factor and RAS proteins. Hrycyna, C.A., Sapperstein, S.K., Clarke, S., Michaelis, S. EMBO J. (1991) [Pubmed]
  26. Homologous activators of ras in fission and budding yeast. Hughes, D.A., Fukui, Y., Yamamoto, M. Nature (1990) [Pubmed]
  27. Possible involvement of RAS-encoded proteins in glucose-induced inositolphospholipid turnover in Saccharomyces cerevisiae. Kaibuchi, K., Miyajima, A., Arai, K., Matsumoto, K. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  28. Role of RAS2 in recovery from chronic stress: effect on yeast life span. Shama, S., Kirchman, P.A., Jiang, J.C., Jazwinski, S.M. Exp. Cell Res. (1998) [Pubmed]
  29. Multiple Upstream Signals Converge on the Adaptor Protein Mst50 in Magnaporthe grisea. Park, G., Xue, C., Zhao, X., Kim, Y., Orbach, M., Xu, J.R. Plant Cell (2006) [Pubmed]
  30. Functional analysis of domains in the Byr2 kinase. Bauman, P., Albright, C.F. Biochimie (1998) [Pubmed]
  31. The Byr2 kinase translocates to the plasma membrane in a Ras1-dependent manner. Bauman, P., Cheng, Q.C., Albright, C.F. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
WikiGenes - Universities