The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Neurons, Efferent

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Neurons, Efferent

  • High levels of zif-268, together with a persistent hyperresponsiveness of striatonigral dymorphinergic neurons and hyporesponsiveness of striatopallidal neurons, by creating an unbalanced state of striatal efferent neurons, may be implicated in dyskinetic movements observed in Parkinson's disease (PD) [1].
 

Psychiatry related information on Neurons, Efferent

 

High impact information on Neurons, Efferent

 

Biological context of Neurons, Efferent

 

Anatomical context of Neurons, Efferent

 

Associations of Neurons, Efferent with chemical compounds

 

Gene context of Neurons, Efferent

  • All medium spiny efferent neurons, some of which were identified as striatonigral neurons, displayed immunoreactivity for GluR1 and GluR2/3 subunits [22].
  • Prodynorphin derivatives, however, may be restricted exclusively to lateral efferent neurons [23].
  • In addition, from E10.5-E11.5, Cx31 was expressed by a column of cells in ventral r4, most likely representing contralateral vestibulo-acoustic efferent neurons, immediately anterior to a ventral column expressing Cx36 at the same stage [24].
  • Additional cochlear efferent neurons, some of which are ChAT-positive and others GAD-positive, are present within and immediately dorsal to the fiber capsule surrounding the medial limb, and to a lesser extent the lateral limb, of the ipsilateral LSO [25].
  • These results indicate that substance P and neuropeptide Y may directly regulate efferent neurons controlling gastric motility and acid secretion [26].
 

Analytical, diagnostic and therapeutic context of Neurons, Efferent

References

  1. Different responsiveness of striatonigral and striatopallidal neurons to L-DOPA after a subchronic intermittent L-DOPA treatment. Carta, A.R., Tronci, E., Pinna, A., Morelli, M. Eur. J. Neurosci. (2005) [Pubmed]
  2. Importance of pup-related sensory inputs and maternal performance for the expression of Fos-like immunoreactivity in the preoptic area and ventral bed nucleus of the stria terminalis of postpartum rats. Numan, M., Numan, M.J. Behav. Neurosci. (1995) [Pubmed]
  3. Rhombomere-specific origin of the contralateral vestibulo-acoustic efferent neurons and their migration across the embryonic midline. Simon, H., Lumsden, A. Neuron (1993) [Pubmed]
  4. Site of action of GABA(B) receptor for vagal motor control of the lower esophageal sphincter in ferrets and rats. McDermott, C.M., Abrahams, T.P., Partosoedarso, E., Hyland, N., Ekstrand, J., Monroe, M., Hornby, P.J. Gastroenterology (2001) [Pubmed]
  5. Neuropeptides, amines and amino acids in an elementary insect ganglion: functional and chemical anatomy of the unfused abdominal ganglion. Nässel, D.R. Prog. Neurobiol. (1996) [Pubmed]
  6. Reelin signaling is necessary for a specific step in the migration of hindbrain efferent neurons. Rossel, M., Loulier, K., Feuillet, C., Alonso, S., Carroll, P. Development (2005) [Pubmed]
  7. The transcription factor GATA3 is a downstream effector of Hoxb1 specification in rhombomere 4. Pata, I., Studer, M., van Doorninck, J.H., Briscoe, J., Kuuse, S., Engel, J.D., Grosveld, F., Karis, A. Development (1999) [Pubmed]
  8. Physiology of electrosensory lateral line lobe neurons in Gnathonemus petersii. Sugawara, Y., Grant, K., Han, V., Bell, C.C. J. Exp. Biol. (1999) [Pubmed]
  9. Light microscopic localization of angiotensin II binding sites in canine medulla using high resolution autoradiography. Szigethy, E.M., Barnes, K.L., Diz, D.I. Brain Res. Bull. (1992) [Pubmed]
  10. Unilateral 6-hydroxydopamine lesions of nigrostriatal dopaminergic neurons increased CB1 receptor mRNA levels in the caudate-putamen. Romero, J., Berrendero, F., Pérez-Rosado, A., Manzanares, J., Rojo, A., Fernández-Ruiz, J.J., de Yebenes, J.G., Ramos, J.A. Life Sci. (2000) [Pubmed]
  11. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy : quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Wichter, T., Schäfers, M., Rhodes, C.G., Borggrefe, M., Lerch, H., Lammertsma, A.A., Hermansen, F., Schober, O., Breithardt, G., Camici, P.G. Circulation (2000) [Pubmed]
  12. The contribution of neurogenic inflammation in experimental arthritis. Levine, J.D., Moskowitz, M.A., Basbaum, A.I. J. Immunol. (1985) [Pubmed]
  13. Vasopressin- and proctolin-like immunoreactive efferent neurons in blowfly abdominal ganglia: development and ultrastructure. Nässel, D.R., Holmqvist, B.I., Movérus, B.J. J. Comp. Neurol. (1989) [Pubmed]
  14. Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Pirot, S., Godbout, R., Mantz, J., Tassin, J.P., Glowinski, J., Thierry, A.M. Neuroscience (1992) [Pubmed]
  15. Acetylcholine increases intracellular Ca2+ in taste cells via activation of muscarinic receptors. Ogura, T. J. Neurophysiol. (2002) [Pubmed]
  16. Two types of actions of norepinephrine on identified auditory efferent neurons in rat brain stem slices. Wang, X., Robertson, D. J. Neurophysiol. (1997) [Pubmed]
  17. Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. Bernard, V., Normand, E., Bloch, B. J. Neurosci. (1992) [Pubmed]
  18. The alpha9/alpha10-containing nicotinic ACh receptor is directly modulated by opioid peptides, endomorphin-1, and dynorphin B, proposed efferent cotransmitters in the inner ear. Lioudyno, M.I., Verbitsky, M., Glowatzki, E., Holt, J.C., Boulter, J., Zadina, J.E., Elgoyhen, A.B., Guth, P.S. Mol. Cell. Neurosci. (2002) [Pubmed]
  19. Clonidine attenuation of a cardiogenic hypertensive chemoreflex. Hageman, G.R., Urthaler, F., James, T.N., Swatzell, R.H. Hypertension (1981) [Pubmed]
  20. Aromatic L-amino acid decarboxylase in rat corpus striatum: implications for action of L-dopa in parkinsonism. Melamed, E., Hefti, F., Pettibone, D.J., Liebman, J., Wurtman, R.J. Neurology (1981) [Pubmed]
  21. Extrinsic innervation of the cat prostate gland: a combined tracing and immunohistochemical study. Danuser, H., Springer, J.P., Katofiasc, M.A., Thor, K.B. J. Urol. (1997) [Pubmed]
  22. Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. Bernard, V., Somogyi, P., Bolam, J.P. J. Neurosci. (1997) [Pubmed]
  23. Endogenous dynorphins: possible role in peripheral tinnitus. Sahley, T.L., Nodar, R.H., Musiek, F.E. The international tinnitus journal. (1999) [Pubmed]
  24. Segment-specific expression of connexin31 in the embryonic hindbrain is regulated by Krox20. Jungbluth, S., Willecke, K., Champagnat, J. Dev. Dyn. (2002) [Pubmed]
  25. Chemically distinct rat olivocochlear neurons. Vetter, D.E., Adams, J.C., Mugnaini, E. Synapse (1991) [Pubmed]
  26. Anatomical relationship between neuropeptide-containing fibers and efferent vagal neurons projecting to the rat corpus. Buchan, A.M., Kwok, Y.N., Pederson, R.A. Regul. Pept. (1991) [Pubmed]
  27. Excitotoxin-induced degeneration of rat vagal afferent neurons. Lewis, S.J., Verberne, A.J., Louis, C.J., Jarrott, B., Beart, P.M., Louis, W.J. Neuroscience (1990) [Pubmed]
  28. Galpha(olf) levels are regulated by receptor usage and control dopamine and adenosine action in the striatum. Hervé, D., Le Moine, C., Corvol, J.C., Belluscio, L., Ledent, C., Fienberg, A.A., Jaber, M., Studler, J.M., Girault, J.A. J. Neurosci. (2001) [Pubmed]
 
WikiGenes - Universities