The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Laurdan     1-(6-dimethylaminonaphthalen- 2-yl)dodecan...

Synonyms: SureCN592846, AG-G-96344, AC1L2XTZ, CTK5E0000, AR-1H1587, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Laurdan

 

High impact information on Laurdan

  • The fluorescent probe Laurdan and two-photon microscopy revealed that focal adhesions are highly ordered; in fact, they are more ordered than caveolae or domains that stain with cholera toxin subunit B (CtxB) [4].
  • To address whether these rearrangements involve alteration in the structure of the plasma membrane bilayer, we used the fluorescent probe Laurdan to visualize its lipid order [5].
  • Furthermore, by using fluorescence recovery after photobleaching studies of domain connectivity and the generalized polarization spectra of Laurdan, we demonstrate that FAPP2 depletion impairs the formation of condensed apical membrane domains [6].
  • Experimental approaches using Laurdan extrinsic fluorescence and Förster-type resonance energy transfer (FRET) that led to the characterization of the polarity and molecular dynamics of the liquid-ordered phase AChR-vicinal lipids and the bulk membrane lipids, and the asymmetry of the AChR-rich membrane are reviewed first [7].
  • Optical microspectrophotometry of Laurdan-labeled neutrophils revealed a large blue shift at lamellipodia relative to cell bodies [8].
 

Chemical compound and disease context of Laurdan

 

Biological context of Laurdan

  • The changes in the efficiency of the Förster energy transfer from the protein to Laurdan brought about by addition of FFA, together with the distances involved in this process, indicate that all FFA studied share a common site at the lipid-protein interface [10].
  • Membrane aging during cell growth ascertained by Laurdan generalized polarization [11].
  • The generalized polarization (GP) of Laurdan-labeled cells contains useful information about membrane fluidity and polarity [12].
  • In the initial phase, <50 ps, the redshift in the spectral mass center is much faster for laurdan excited at the blue edge (350 nm), whereas at longer time intervals, similar kinetics is observed upon excitation at either blue or red edge (400 nm) [13].
  • We tested the susceptibility to oxidative stress in vitro, the fatty acid content, the fluidity using 2-dimethylamino-(6-lauroyl)-naphthalene (Laurdan) and 1,6-difenil-1,3,5-esatriene (DPH) probes [14].
 

Anatomical context of Laurdan

  • In all cases redshifts of 50 to 60 nm were observed as a function of temperature in the spectral emission maximum of laurdan embedded in these membranes [15].
  • Visualizing membrane microdomains by Laurdan 2-photon microscopy (Review) [16].
  • Two-photon excitation microscopy shows coexisting regions of different generalized polarization (GP) in phospholipid vesicles, in red blood cells, in a renal tubular cell line, and in purified renal brushborder and basolateral membranes labeled with the fluorescent probe laurdan [17].
  • Microvesicle membranes appeared more ordered than native erythrocytes and similar to ionophore-treated cells based on laurdan emission [18].
  • The fluorescent probe Laurdan, localized only within the plasma membrane of spermatozoa, is particularly useful to evaluate bilayer polarity in this part of the cell [9].
 

Associations of Laurdan with other chemical compounds

  • Previous fluorescence and infrared data indicated that membrane perturbation caused by the probes increases in the order: Laurdan > Prodan > Acdan [19].
  • Cholesterol depletion also resulted in a significant increase in membrane lipid fluidity and alterations in lipid microdomains as determined by laurdan fluorescence spectroscopy and imaging [20].
  • A still unexploited property of laurdan, namely its ability to act as a fluorescence energy transfer acceptor from tryptophan emission, has been used to measure properties of the protein-vicinal lipid [15].
  • Absorption, steady-state, and time-resolved fluorescence measurements have been performed on laurdan dissolved either in white viscous apolar solvents or in ethanol as a function of temperature [21].
  • We studied the dipolar relaxation of the surfactant-water interface in reverse micelles of AOT-water in isooctane in the nanosecond and subnanosecond time ranges by incorporating the amphipathic solvatochromic fluorescent probes LAURDAN and TOE [22].
 

Gene context of Laurdan

  • The generalized polarization of Laurdan increased with increasing cholesterol, showing an abrupt modification at the native cholesterol content [23].
  • RESULT: Our results show a red shift of the fluorescence excitation and emission spectra of Laurdan in PMN from the PCD group with respect to the control group [24].
  • No modifications of apoprotein structure and physico-chemical properties were observed in Hcy-LDL with respect to control LDL (c-LDL), as evaluated using the intrinsic fluorescence of tryptophan and the probe Laurdan incorporated in lipoproteins [25].
  • Contrarily, the Laurdan molecule was not squeezed out from the glycerol backbone region because the long acyl chain of Laurdan serves as an anchor in the hydrophobic core of bilayer [26].
 

Analytical, diagnostic and therapeutic context of Laurdan

References

  1. Laurdan fluorescence: a simple method to evaluate sperm plasma membrane alterations. Ambrosini, A., Zolese, G., Balercia, G., Bertoli, E., Arnaldi, G., Mantero, F. Fertil. Steril. (2001) [Pubmed]
  2. GPS, the slope of laurdan generalized polarization spectra, in the study of phospholipid lateral organization and Escherichia coli lipid phases. Vel??zquez, J.B., Fern??ndez, M.S. Arch. Biochem. Biophys. (2006) [Pubmed]
  3. Use of the fluorescent probe Laurdan to investigate structural organization of the vesicular stomatitis virus (VSV) membrane. Lisi, A., Pozzi, D., Grimaldi, S. Membrane biochemistry. (1993) [Pubmed]
  4. Integrin-mediated adhesion regulates membrane order. Gaus, K., Le Lay, S., Balasubramanian, N., Schwartz, M.A. J. Cell Biol. (2006) [Pubmed]
  5. Condensation of the plasma membrane at the site of T lymphocyte activation. Gaus, K., Chklovskaia, E., Fazekas de St Groth, B., Jessup, W., Harder, T. J. Cell Biol. (2005) [Pubmed]
  6. From the Cover: FAPP2, cilium formation, and compartmentalization of the apical membrane in polarized Madin-Darby canine kidney (MDCK) cells. Vieira, O.V., Gaus, K., Verkade, P., Fullekrug, J., Vaz, W.L., Simons, K. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  7. Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Barrantes, F.J. Brain Res. Brain Res. Rev. (2004) [Pubmed]
  8. Cutting edge: optical microspectrophotometry supports the existence of gel phase lipid rafts at the lamellipodium of neutrophils: apparent role in calcium signaling. Kindzelskii, A.L., Sitrin, R.G., Petty, H.R. J. Immunol. (2004) [Pubmed]
  9. Idiopathic infertility: susceptibility of spermatozoa to in-vitro capacitation, in the presence and the absence of palmitylethanolamide (a homologue of anandamide), is strongly correlated with membrane polarity studied by Laurdan fluorescence. Ambrosini, A., Zolese, G., Wozniak, M., Genga, D., Boscaro, M., Mantero, F., Balercia, G. Mol. Hum. Reprod. (2003) [Pubmed]
  10. Unique effects of different fatty acid species on the physical properties of the torpedo acetylcholine receptor membrane. Antollini, S.S., Barrantes, F.J. J. Biol. Chem. (2002) [Pubmed]
  11. Membrane aging during cell growth ascertained by Laurdan generalized polarization. Parasassi, T., Di Stefano, M., Ravagnan, G., Sapora, O., Gratton, E. Exp. Cell Res. (1992) [Pubmed]
  12. Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach. Yu, W., So, P.T., French, T., Gratton, E. Biophys. J. (1996) [Pubmed]
  13. Coexistence of domains with distinct order and polarity in fluid bacterial membranes. Vanounou, S., Pines, D., Pines, E., Parola, A.H., Fishov, I. Photochem. Photobiol. (2002) [Pubmed]
  14. Chemical-physical properties of lipoproteins in anorexia nervosa. Curatola, G., Camilloni, M.A., Vignini, A., Nanetti, L., Boscaro, M., Mazzanti, L. Eur. J. Clin. Invest. (2004) [Pubmed]
  15. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Antollini, S.S., Soto, M.A., Bonini de Romanelli, I., Gutiérrez-Merino, C., Sotomayor, P., Barrantes, F.J. Biophys. J. (1996) [Pubmed]
  16. Visualizing membrane microdomains by Laurdan 2-photon microscopy (Review). Gaus, K., Zech, T., Harder, T. Mol. Membr. Biol. (2006) [Pubmed]
  17. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Parasassi, T., Gratton, E., Yu, W.M., Wilson, P., Levi, M. Biophys. J. (1997) [Pubmed]
  18. Use of steady-state laurdan fluorescence to detect changes in liquid ordered phases in human erythrocyte membranes. Vest, R., Wallis, R., Jensen, L.B., Haws, A.C., Callister, J., Brimhall, B., Judd, A.M., Bell, J.D. J. Membr. Biol. (2006) [Pubmed]
  19. Effect of ethanol-induced lipid interdigitation on the membrane solubility of Prodan, Acdan, and Laurdan. Zeng, J., Chong, P.L. Biophys. J. (1995) [Pubmed]
  20. Acute and chronic changes in cholesterol modulate Na-Pi cotransport activity in OK cells. Breusegem, S.Y., Halaihel, N., Inoue, M., Zajicek, H., Lederer, E., Barry, N.P., Sorribas, V., Levi, M. Am. J. Physiol. Renal Physiol. (2005) [Pubmed]
  21. Laurdan solvatochromism: solvent dielectric relaxation and intramolecular excited-state reaction. Viard, M., Gallay, J., Vincent, M., Meyer, O., Robert, B., Paternostre, M. Biophys. J. (1997) [Pubmed]
  22. Nanosecond dynamics of a mimicked membrane-water interface observed by time-resolved stokes shift of LAURDAN. Vincent, M., de Foresta, B., Gallay, J. Biophys. J. (2005) [Pubmed]
  23. Modulation of pig kidney Na+/K+-ATPase activity by cholesterol: role of hydration. Sotomayor, C.P., Aguilar, L.F., Cuevas, F.J., Helms, M.K., Jameson, D.M. Biochemistry (2000) [Pubmed]
  24. Plasma membrane polarity of polymorphonuclear leucocytes from children with primary ciliary dyskinesia. Fiorini, R., Littarru, G.P., Coppa, G.V., Kantar, A. Eur. J. Clin. Invest. (2000) [Pubmed]
  25. Effect of homocysteinylation of low density lipoproteins on lipid peroxidation of human endothelial cells. Ferretti, G., Bacchetti, T., Moroni, C., Vignini, A., Nanetti, L., Curatola, G. J. Cell. Biochem. (2004) [Pubmed]
  26. Pressure-induced phase transitions of lipid bilayers observed by fluorescent probes Prodan and Laurdan. Kusube, M., Tamai, N., Matsuki, H., Kaneshina, S. Biophys. Chem. (2005) [Pubmed]
  27. Mitochondrial creatine kinase binding to phospholipids decreases fluidity of membranes and promotes new lipid-induced beta structures as monitored by red edge excitation shift, laurdan fluorescence, and FTIR. Granjon, T., Vacheron, M.J., Vial, C., Buchet, R. Biochemistry (2001) [Pubmed]
  28. Interaction between artificial membranes and enflurane, a general volatile anesthetic: DPPC-enflurane interaction. Hauet, N., Artzner, F., Boucher, F., Grabielle-Madelmont, C., Cloutier, I., Keller, G., Lesieur, P., Durand, D., Paternostre, M. Biophys. J. (2003) [Pubmed]
  29. Time-resolved fluorescence emission spectra of Laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry. Parasassi, T., Conti, F., Gratton, E. Cell. Mol. Biol. (1986) [Pubmed]
  30. Perturbation of the chain melting transition of DPPC by galactose, agarose and Laurdan as determined by differential scanning calorimetry. Abrams, S.B., Yager, P. Biochim. Biophys. Acta (1993) [Pubmed]
 
WikiGenes - Universities