The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Enlirane     2-chloro-1-(difluoromethoxy)- 1,1,2...

Synonyms: Alyrane, Ethrane, enflurane, Enfran, Etran, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of enflurane

 

Psychiatry related information on enflurane

 

High impact information on enflurane

  • Halothane (I), enflurane (II), and isoflurane (III), which are among the most important inhalation anesthetics, are currently administered as racemic mixtures [11].
  • Thirty-two enflurane/N2O-anesthetized open-chest dogs were subjected to 15 minutes of occlusion of the left circumflex coronary artery (LCx) and 4 hours of subsequent reperfusion [12].
  • It was found that halothane and enflurane decreased the transition temperature and increased the width of the transition without affecting the enthalpy change for the main gel-to-liquid crystalline transition [13].
  • In oocytes expressing mouse mRNA, enflurane at an anesthetic concentration (1.8 mM) inhibited the NMDA-, AMPA-, and kainate-induced currents by 29-40%, 30-33%, and 20-27%, respectively, suggesting that all three glutamate ionotropic receptors are susceptible to suppression by inhalational anesthetics [14].
  • Effects of enflurane, an inhalational anesthetic, on NMDA, AMPA, and kainate-gated currents were examined in Xenopus laevis oocytes expressing mouse or human brain mRNA [14].
 

Chemical compound and disease context of enflurane

 

Biological context of enflurane

 

Anatomical context of enflurane

 

Associations of enflurane with other chemical compounds

  • Correlations were also obtained for five inhalation anesthetics (enflurane, sevoflurane, desflurane, methoxyflurane, and isoflurane) for both in vivo and in vitro metabolism by humans: In[F(-)]peak plasma = 42.87 - 1.57(delta Hact), r2 = 0.86 [29].
  • The partial pressures of diethylether, enflurane, and methoxyflurane that decreased the surface potential by 10 mV were 2.1 X 10(-2), 1.7 X 10(-2), and 0.17 X 10(-2) bar, respectively, which were in agreement with the minimal alveolar concentrations of these anesthetics to achieve surgical anesthesia [30].
  • The DeltaS degrees values accompanying isoflurane, sevoflurane, and enflurane binding were -8.5 cal/mol K, -10.4 cal/mol K, and -8.0 cal/mol K, respectively [31].
  • Potentiation of GABA-activated currents by enflurane was dependent on the composition of GABAA receptor protein subunits; the order of sensitivity was alpha 1 beta 1 > alpha 1 beta 1 gamma 2S = alpha 1 beta 1 gamma 2L > total mRNA [32].
  • Recovery room (RR) admission temperatures were similar for the three groups: fentanyl, 36.1 +/- 0.1 degrees C; enflurane, 35.7 +/- 0.2 degrees C; and halothane, 36.0 +/- 0.1 degrees C (P greater than 0.05) [33].
 

Gene context of enflurane

 

Analytical, diagnostic and therapeutic context of enflurane

  • Blood enflurane concentrations were measured by gas chromatography [25].
  • Under normoxic conditions, inner retinal oxygen tension remained unchanged or increased slightly as ocular perfusion pressure decreased with deeper levels of enflurane anesthesia [5].
  • METHODS AND RESULTS: In 42 enflurane-anesthetized pigs, the LAD coronary artery was cannulated, and subendocardial blood flow (ENDO, microspheres, ml/min/g) and IS (%, TTC-staining) were determined [38].
  • Polarographic oxygen microelectrodes were used to measure inner retinal oxygen tension in cats under enflurane anesthesia at 21% inspired oxygen tension [5].
  • The nature of the EEG changes at this time was agent-specific (P less than 0.05 by chi-square), with high-frequency changes evident in the enflurane group and shifts in amplitude in the 8-12 Hz activity predominating in the nitrous oxide-enflurane group [39].

References

  1. Enflurane-associated hepatitis. Kline, M.M. Gastroenterology (1980) [Pubmed]
  2. Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Schulz, R., Rose, J., Martin, C., Brodde, O.E., Heusch, G. Circulation (1993) [Pubmed]
  3. Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. Jalowy, A., Schulz, R., Dörge, H., Behrends, M., Heusch, G. J. Am. Coll. Cardiol. (1998) [Pubmed]
  4. Reduction of cerebrospinal fluid pressure by hypocapnia: changes in cerebral blood volume, cerebrospinal fluid volume and brain tissue water and electrolytes. II. Effects of anesthetics. Artru, A.A. J. Cereb. Blood Flow Metab. (1988) [Pubmed]
  5. Retinal tissue oxygen tension in normoxic cats under enflurane anesthesia. Neely, K.A., Ernest, J.T., Goldstick, T.K. Invest. Ophthalmol. Vis. Sci. (1995) [Pubmed]
  6. Alteration by enflurane of Electrophysiologic correlates of search in short-term memory. Adam, N., Collins, G.I. Anesthesiology (1979) [Pubmed]
  7. Recovery, psychomotor skills, and simulated driving after brief inhalational anesthesia with halothane or enflurane combined with nitrous oxide and oxygen. Korttila, K., Tammisto, T., Ertama, P., Pfäffli, P., Blomgren, E., Häkkinen, S. Anesthesiology (1977) [Pubmed]
  8. Effect of enflurane on cerebellar cGMP and on motor activity in the mouse. Vulliemoz, Y., Verosky, M., Alpert, M., Triner, L. British journal of anaesthesia. (1983) [Pubmed]
  9. Effect of subanesthetic concentration of enflurane and halothane on human behavior. Cook, T.L., Smith, M., Winter, P.M., Starkweather, J.A., Eger, E.I. Anesth. Analg. (1978) [Pubmed]
  10. Effects of low concentrations of enflurane on probability learning. Bentin, S., Collins, G.I., Adam, N. British journal of anaesthesia. (1978) [Pubmed]
  11. Inhalational anesthetics stereochemistry: optical resolution of halothane, enflurane, and isoflurane. Meinwald, J., Thompson, W.R., Pearson, D.L., König, W.A., Runge, T., Francke, W. Science (1991) [Pubmed]
  12. Attenuation of myocardial stunning by the ACE inhibitor ramiprilat through a signal cascade of bradykinin and prostaglandins but not nitric oxide. Ehring, T., Baumgart, D., Krajcar, M., Hümmelgen, M., Kompa, S., Heusch, G. Circulation (1994) [Pubmed]
  13. Effect of anesthetics and pressure on the thermotropic behavior of multilamellar dipalmitoylphosphatidylcholine liposomes. Mountcastle, D.B., Biltonen, R.L., Halsey, M.J. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  14. Enflurane inhibits NMDA, AMPA, and kainate-induced currents in Xenopus oocytes expressing mouse and human brain mRNA. Lin, L.H., Chen, L.L., Harris, R.A. FASEB J. (1993) [Pubmed]
  15. Anesthetic indices--further data. Wolfson, B., Hetrick, W.D., Lake, C.L., Siker, E.S. Anesthesiology (1978) [Pubmed]
  16. Liver function and anesthetic metabolism in rats with chronic renal impairment. Rice, S.A., Sievenpiper, T.S., Mazze, R.I. Anesthesiology (1984) [Pubmed]
  17. Anesthetic influence on arteriolar diameters and tissue oxygen tension in hemorrhaged rats. Longnecker, D.E., Ross, D.C., Silver, I.A. Anesthesiology (1982) [Pubmed]
  18. Depression of myocardial force and stiffness without change in crossbridge kinetics: effects of volatile anesthetics reproduced by nifedipine. Chung, O.Y., Blanck, T.J., Berman, M.R. Anesthesiology (1989) [Pubmed]
  19. Renal function and serum fluoride concentrations in patients with stable renal insufficiency after anesthesia with sevoflurane or enflurane. Conzen, P.F., Nuscheler, M., Melotte, A., Verhaegen, M., Leupolt, T., Van Aken, H., Peter, K. Anesth. Analg. (1995) [Pubmed]
  20. Fluoride kinetics after enflurane anesthesia in healthy and anephric patients and in patients with poor renal function. Carter, R., Heerdt, M., Acchiardo, S. Clin. Pharmacol. Ther. (1976) [Pubmed]
  21. Synaptic effects of halogenated anesthetics on short-latency SEP. Vandesteen, A., Nogueira, M.C., Mavroudakis, N., Defevrimont, M., Brunko, E., Zegers de Beyl, D. Neurology (1991) [Pubmed]
  22. Enflurane inhibits the function of mouse and human brain phosphatidylinositol-linked acetylcholine and serotonin receptors expressed in Xenopus oocytes. Lin, L.H., Leonard, S., Harris, R.A. Mol. Pharmacol. (1993) [Pubmed]
  23. Heart rate response to nociceptive stimulation as an index of anesthetic potency for enflurane. Kissin, I., Morgan, P.L. Anesthesiology (1983) [Pubmed]
  24. Hydrophilic region of lecithin membranes studied by bromothymol blue and effects of an inhalation anesthetic, enflurane. Mashimo, T., Ueda, I., Shieh, D.D., Kamaya, H., Eyring, H. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  25. Clinical enflurane metabolism by cytochrome P450 2E1. Kharasch, E.D., Thummel, K.E., Mautz, D., Bosse, S. Clin. Pharmacol. Ther. (1994) [Pubmed]
  26. Modality-specific hypersensitivity of dorsal horn convergent neurones during reperfusion of their receptive fields on the rat's tail. Gelgor, L., Mitchell, D. Pain (1993) [Pubmed]
  27. Less afterload sensitivity in short-term hibernating than in acutely ischemic and stunned myocardium. Schulz, R., Rose, J., Post, H., Skyschally, A., Heusch, G. Am. J. Physiol. Heart Circ. Physiol. (2000) [Pubmed]
  28. Effect of inhalation anesthetics on antipyrine pharmacokinetics of mice. Van Dyke, R.A., Kooistra, K.L., Moses, C.J., Powis, G. Biochem. Pharmacol. (1987) [Pubmed]
  29. Designing safer chemicals: predicting the rates of metabolism of halogenated alkanes. Yin, H., Anders, M.W., Korzekwa, K.R., Higgins, L., Thummel, K.E., Kharasch, E.D., Jones, J.P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  30. Anesthetic-protein interaction: surface potential of bovine serum albumin estimated by a pH-sensitive dye. Mashimo, T., Kamaya, H., Ueda, I. Mol. Pharmacol. (1986) [Pubmed]
  31. An isothermal titration calorimetry study on the binding of four volatile general anesthetics to the hydrophobic core of a four-alpha-helix bundle protein. Zhang, T., Johansson, J.S. Biophys. J. (2003) [Pubmed]
  32. Molecular determinants of general anesthetic action: role of GABAA receptor structure. Lin, L.H., Whiting, P., Harris, R.A. J. Neurochem. (1993) [Pubmed]
  33. General anesthesia for morbidly obese patients--an examination of postoperative outcomes. Cork, R.C., Vaughan, R.W., Bentley, J.B. Anesthesiology (1981) [Pubmed]
  34. Halogenated anesthetics reduce interleukin-1beta-induced cytokine secretion by rat alveolar type II cells in primary culture. Giraud, O., Molliex, S., Rolland, C., Leçon-Malas, V., Desmonts, J.M., Aubier, M., Dehoux, M. Anesthesiology (2003) [Pubmed]
  35. The effects of some porphyrinogenic drugs on the brain cholinergic system. Rodriguez, J.A., Buzaleh, A.M., Fossati, M., Azcurra, J., Batlle, A.M. Cell. Mol. Biol. (Noisy-le-grand) (2002) [Pubmed]
  36. Differential effects of the neuropeptide galanin on striatal acetylcholine release in anaesthetized and awake rats. Antoniou, K., Kehr, J., Snitt, K., Ogren, S.O. Br. J. Pharmacol. (1997) [Pubmed]
  37. Choline acetyltransferase activity of rat synaptosomes is sensitive to enflurane, but not halothane or isoflurane. Griffiths, R., Boyle, E., Greiff, J.M., Rowbotham, D.J., Norman, R.I. British journal of anaesthesia. (1994) [Pubmed]
  38. Involvement of endogenous prostaglandins in ischemic preconditioning in pigs. Gres, P., Schulz, R., Jansen, J., Umschlag, C., Heusch, G. Cardiovasc. Res. (2002) [Pubmed]
  39. Power spectrum correlates of changes in consciousness during anesthetic induction with enflurane. Levy, W.J. Anesthesiology (1986) [Pubmed]
 
WikiGenes - Universities