The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Pseudopodia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Pseudopodia

 

High impact information on Pseudopodia

  • In Ena/VASP deficient cells, CP depletion resulted in ruffling instead of filopodia [6].
  • In spreading and migrating cells we find local periodic contractions of lamellipodia that depend on matrix rigidity, fibronectin binding and myosin light chain kinase (MLCK) [7].
  • Taken together, a dynamic mechanism for intercellular adhesion is unveiled involving calcium-activated filopodia penetration and VASP/Mena-dependent actin reorganization/polymerization [8].
  • E-cadherin complexes cluster at filopodia tips, generating a two-rowed zipper of embedded puncta [8].
  • Rac and Cdc42 regulate a variety of responses in mammalian cells including formation of lamellipodia and filopodia, activation of the JNK MAP kinase cascade, and induction of G1 cell cycle progression [9].
 

Chemical compound and disease context of Pseudopodia

 

Biological context of Pseudopodia

  • Rearrangement of cytoplasm, fusion of membranous organelles with the plasma membrane and growth of pseudopodia, all characteristic of in vivo spermiogenesis, occur within five minutes after exposure to monensin at concentrations of 0.1-1.0 micronM [13].
  • Consistent with a role in mediating matrix adhesion and migration ultrastructurally, CD44 was found uniformly over the cell surface and was found densely labeling filopodia and lamellipodia, highly motile structures involved in cell migration [14].
  • Importantly, knock-down of Myo10 by short interfering RNA impaired integrin function in cell adhesion, whereas overexpression of Myo10 stimulated the formation and elongation of filopodia in an integrin-dependent manner and relocalized integrins together with Myo10 to the tips of filopodia [15].
  • Treatment with Y-27632 or ML-7 that inhibits myosin phosphorylation and contractility increased lamellipodia through Rac activation and decreased cell polarization [16].
  • Significantly, we establish that sustained TAM67 expression inhibits growth factor-induced cell motility and the reorganization of the cytoskeleton and cell-shape changes essential for this process: TAM67 expression inhibits EGF-induced membrane ruffling, lamellipodia formation, cortical actin polymerization and cell rounding [17].
 

Anatomical context of Pseudopodia

 

Associations of Pseudopodia with chemical compounds

  • Washed platelets activated by alpha-thrombin, gamma-thrombin, thrombocytin or the ionophore A23187 (ref. 3) lose their disk shape, produce pseudopodia and become cohesive [23].
  • Consistent with this idea, we found opposing defects in embryos harboring only a heparin-binding isoform of VEGF-A, including excess endothelial filopodia and abnormally thin vessel branches in ectopic sites [24].
  • These processes are associated with the extension of lamellipodia and require actin polymerization, tyrosine kinase activation, cytoplasmic calcium increases, and LAT, an important hematopoietic adaptor [25].
  • Glutamate regulates actin-based motility in axonal filopodia [26].
  • Activation of protein kinase C results in the displacement of its myristoylated, alanine-rich substrate from punctate structures in macrophage filopodia [20].
 

Gene context of Pseudopodia

 

Analytical, diagnostic and therapeutic context of Pseudopodia

References

  1. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. Egile, C., Loisel, T.P., Laurent, V., Li, R., Pantaloni, D., Sansonetti, P.J., Carlier, M.F. J. Cell Biol. (1999) [Pubmed]
  2. The small GTPase RalA targets filamin to induce filopodia. Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J.H., Stossel, T.P. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  3. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Kozma, R., Sarner, S., Ahmed, S., Lim, L. Mol. Cell. Biol. (1997) [Pubmed]
  4. Increased beta-actin expression in an invasive moloney sarcoma virus-transformed MDCK cell variant concentrates to the tips of multiple pseudopodia. Le, P.U., Nguyen, T.N., Drolet-Savoie, P., Leclerc, N., Nabi, I.R. Cancer Res. (1998) [Pubmed]
  5. Pathological adhesion of primary human schwannoma cells is dependent on altered expression of integrins. Utermark, T., Kaempchen, K., Hanemann, C.O. Brain Pathol. (2003) [Pubmed]
  6. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Mejillano, M.R., Kojima, S., Applewhite, D.A., Gertler, F.B., Svitkina, T.M., Borisy, G.G. Cell (2004) [Pubmed]
  7. Periodic lamellipodial contractions correlate with rearward actin waves. Giannone, G., Dubin-Thaler, B.J., Döbereiner, H.G., Kieffer, N., Bresnick, A.R., Sheetz, M.P. Cell (2004) [Pubmed]
  8. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Vasioukhin, V., Bauer, C., Yin, M., Fuchs, E. Cell (2000) [Pubmed]
  9. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Lamarche, N., Tapon, N., Stowers, L., Burbelo, P.D., Aspenström, P., Bridges, T., Chant, J., Hall, A. Cell (1996) [Pubmed]
  10. Biomimetic systems for studying actin-based motility. Upadhyaya, A., van Oudenaarden, A. Curr. Biol. (2003) [Pubmed]
  11. Effects of simple lipids on macrophages in vitro. Smith, I.I., Stuart, A.E. J. Pathol. (1975) [Pubmed]
  12. ADP-ribosylation of Rho-proteins with botulinum C3 exoenzyme inhibits invasion and shape changes of T-lymphoma cells. Verschueren, H., De Baetselier, P., De Braekeleer, J., Dewit, J., Aktories, K., Just, I. Eur. J. Cell Biol. (1997) [Pubmed]
  13. Vesicle fusion, pseudopod extension and amoeboid motility are induced in nematode spermatids by the ionophore monensin. Nelson, G.A., Ward, S. Cell (1980) [Pubmed]
  14. Acute lung injury fibroblast migration and invasion of a fibrin matrix is mediated by CD44. Svee, K., White, J., Vaillant, P., Jessurun, J., Roongta, U., Krumwiede, M., Johnson, D., Henke, C. J. Clin. Invest. (1996) [Pubmed]
  15. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Zhang, H., Berg, J.S., Li, Z., Wang, Y., Lång, P., Sousa, A.D., Bhaskar, A., Cheney, R.E., Strömblad, S. Nat. Cell Biol. (2004) [Pubmed]
  16. Effects of cell tension on the small GTPase Rac. Katsumi, A., Milanini, J., Kiosses, W.B., del Pozo, M.A., Kaunas, R., Chien, S., Hahn, K.M., Schwartz, M.A. J. Cell Biol. (2002) [Pubmed]
  17. The transcription factor AP-1 is required for EGF-induced activation of rho-like GTPases, cytoskeletal rearrangements, motility, and in vitro invasion of A431 cells. Malliri, A., Symons, M., Hennigan, R.F., Hurlstone, A.F., Lamb, R.F., Wheeler, T., Ozanne, B.W. J. Cell Biol. (1998) [Pubmed]
  18. The synaptic vesicle protein synaptotagmin promotes formation of filopodia in fibroblasts. Feany, M.B., Buckley, K.M. Nature (1993) [Pubmed]
  19. Bidirectional signaling between the cytoskeleton and integrins. Schoenwaelder, S.M., Burridge, K. Curr. Opin. Cell Biol. (1999) [Pubmed]
  20. Activation of protein kinase C results in the displacement of its myristoylated, alanine-rich substrate from punctate structures in macrophage filopodia. Rosen, A., Keenan, K.F., Thelen, M., Nairn, A.C., Aderem, A. J. Exp. Med. (1990) [Pubmed]
  21. Antibodies to basement membrane heparan sulfate proteoglycans bind to the laminae rarae of the glomerular basement membrane (GBM) and induce subepithelial GBM thickening. Miettinen, A., Stow, J.L., Mentone, S., Farquhar, M.G. J. Exp. Med. (1986) [Pubmed]
  22. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Meshel, A.S., Wei, Q., Adelstein, R.S., Sheetz, M.P. Nat. Cell Biol. (2005) [Pubmed]
  23. Fibrinogen is the receptor for the endogenous lectin of human platelets. Gartner, T.K., Gerrard, J.M., White, J.G., Williams, D.C. Nature (1981) [Pubmed]
  24. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Ruhrberg, C., Gerhardt, H., Golding, M., Watson, R., Ioannidou, S., Fujisawa, H., Betsholtz, C., Shima, D.T. Genes Dev. (2002) [Pubmed]
  25. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Bunnell, S.C., Kapoor, V., Trible, R.P., Zhang, W., Samelson, L.E. Immunity (2001) [Pubmed]
  26. Glutamate regulates actin-based motility in axonal filopodia. Chang, S., De Camilli, P. Nat. Neurosci. (2001) [Pubmed]
  27. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Minden, A., Lin, A., Claret, F.X., Abo, A., Karin, M. Cell (1995) [Pubmed]
  28. Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell cycle progression. Bourdoulous, S., Orend, G., MacKenna, D.A., Pasqualini, R., Ruoslahti, E. J. Cell Biol. (1998) [Pubmed]
  29. Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. Dharmawardhane, S., Sanders, L.C., Martin, S.S., Daniels, R.H., Bokoch, G.M. J. Cell Biol. (1997) [Pubmed]
  30. How VASP enhances actin-based motility. Samarin, S., Romero, S., Kocks, C., Didry, D., Pantaloni, D., Carlier, M.F. J. Cell Biol. (2003) [Pubmed]
  31. WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Martinez-Quiles, N., Rohatgi, R., Antón, I.M., Medina, M., Saville, S.P., Miki, H., Yamaguchi, H., Takenawa, T., Hartwig, J.H., Geha, R.S., Ramesh, N. Nat. Cell Biol. (2001) [Pubmed]
  32. The organization of myosin and actin in rapid frozen nerve growth cones. Bridgman, P.C., Dailey, M.E. J. Cell Biol. (1989) [Pubmed]
  33. PSTPIP: a tyrosine phosphorylated cleavage furrow-associated protein that is a substrate for a PEST tyrosine phosphatase. Spencer, S., Dowbenko, D., Cheng, J., Li, W., Brush, J., Utzig, S., Simanis, V., Lasky, L.A. J. Cell Biol. (1997) [Pubmed]
  34. The integrin alpha6beta4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures. Rabinovitz, I., Mercurio, A.M. J. Cell Biol. (1997) [Pubmed]
  35. Actin filament content and organization in unstimulated platelets. Fox, J.E., Boyles, J.K., Reynolds, C.C., Phillips, D.R. J. Cell Biol. (1984) [Pubmed]
 
WikiGenes - Universities