The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Bialaphos     2-[2-[[2-amino-4-(hydroxy- methyl...

Synonyms: AGN-PC-00KU8Q, NSC-626779, AC1L3JHP, NSC626779, NCI60_008471
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bialaphos

  • We analyzed the response to CaMV infection of a transgenic oilseed rape line containing the bialaphos tolerance gene (BAR) from Streptomyces hygroscopicus, regulated by the 35S promoter [1].
  • Enhanced expression of the bialaphos resistance (bar) from Streptomyces hygroscopicus, which confers resistance to the herbicides bialaphos and phosphinothricin (PPT), has been obtained in Escherichia coli using a vector system based on translational coupling [2].
  • Herbicide-resistant transgenic Panax ginseng plants were produced by introducing the phosphinothricin acetyl transferase (PAT) gene that confers resistance to the herbicide Basta (bialaphos) through Agrobacterium tumefaciens co-cultivation [3].
  • His clinical course indicates that the management of apnea is critically important to recovery from bialaphos poisoning [4].
  • Bialaphos poisoning with apnea and metabolic acidosis [4].

High impact information on Bialaphos


Chemical compound and disease context of Bialaphos


Biological context of Bialaphos

  • Extensive methylation of the Ubi1 promoter has been shown to be associated with transcriptional silencing and bialaphos herbicide sensitivity in several R(1) progeny derived from a transgenic rice line, JKA 52, containing multiple copies of the introduced genes (Kumpatla et al. 1997;Plant Physiol. 115, 361-373) [15].
  • Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus [16].
  • The first 30 residues of the amino terminus of this protein were identical to those predicted by the nucleotide sequence of the gene that restored BA production to NP213 [17].
  • For the 2 T-DNA vector treatment, 86.7% of the bialaphos resistant/GUS active calli produced R0 plants exhibiting both transgenic phenotypes compared to 10% for the mixed strain treatment and 99% for the single T-DNA control vector treatment [18].
  • We have created three new dominant drug resistance cassettes by replacing the kanamycin resistance (kan(r)) open reading frame from the kanMX3 and kanMX4 disruption-deletion cassettes (Wach et al., 1994) with open reading frames conferring resistance to the antibiotics hygromycin B (hph), nourseothricin (nat) and bialaphos (pat) [19].

Anatomical context of Bialaphos


Associations of Bialaphos with other chemical compounds


Gene context of Bialaphos

  • A plasmid pLC-bar containing the bialaphos resistance gene derived from Streptomyces hygroscopicus between the Lentinus edodes ras gene promoter and priA gene terminator was constructed [25].
  • A total of 93.4% of the bialaphos selected calli from the 2 T-DNA vector treatment exhibited GUS activity compared to 11.7% for the mixed strain treatment and 98.2% for the cis control vector treatment [18].
  • In all genotypes, more than seven hundred immature embryos were bombarded with a plasmid containing a bialaphos-resistant gene under control of the rice actin 1 gene [26].

Analytical, diagnostic and therapeutic context of Bialaphos

  • Twenty-three out of 32 bialaphos-resistant plants integrated the NtFAD3 gene, which was confirmed by Southern-blot analysis of R0 plants, and showed one to more than 20 hybridizing bands of exogenous DNA, indicating a 72% (23/32) co-integration frequency [27].
  • A 47-year-old Japanese woman undergoing maintenance hemodialysis (HD) was admitted to our hospital because of poisoning with the herbicide bialaphos [22].
  • Treatment with HD and direct hemoperfusion, followed by HD alone, effectively removed bialaphos and its chief toxic metabolite (L-AMPB) from the circulation (bialaphos decreased from 0.33 to < 0.05 microg/ml and L-AMPB from 14 to 0.86 microg/ml) [22].
  • A resulting construct with a Bar gene cassette for bialaphos selection in plant (rpE-VP2) was introduced into Agrobacterium tumefaciens by electroporation [28].


  1. Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppression of a 35S promoter-regulated transgene. Al-Kaff, N.S., Kreike, M.M., Covey, S.N., Pitcher, R., Page, A.M., Dale, P.J. Nat. Biotechnol. (2000) [Pubmed]
  2. Characterization of phosphinothricin acetyltransferase and C-terminal enzymatically active fusion proteins. Botterman, J., Gosselé, V., Thoen, C., Lauwereys, M. Gene (1991) [Pubmed]
  3. Production of herbicide-resistant transgenic Panax ginseng through the introduction of the phosphinothricin acetyl transferase gene and successful soil transfer. Choi, Y.E., Jeong, J.H., In, J.K., Yang, D.C. Plant Cell Rep. (2003) [Pubmed]
  4. Bialaphos poisoning with apnea and metabolic acidosis. Matsukawa, Y., Hachisuka, H., Sawada, S., Horie, T., Kitammi, Y., Nishijima, S. J. Toxicol. Clin. Toxicol. (1991) [Pubmed]
  5. Overexpression of thioredoxin h leads to enhanced activity of starch debranching enzyme (pullulanase) in barley grain. Cho, M.J., Wong, J.H., Marx, C., Jiang, W., Lemaux, P.G., Buchanan, B.B. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  6. Transgenic sorghum plants via microprojectile bombardment. Casas, A.M., Kononowicz, A.K., Zehr, U.B., Tomes, D.T., Axtell, J.D., Butler, L.G., Bressan, R.A., Hasegawa, P.M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  7. Identification of a second oligopeptide transport system in Bacillus subtilis and determination of its role in sporulation. Koide, A., Hoch, J.A. Mol. Microbiol. (1994) [Pubmed]
  8. Global changes in gene expression related to antibiotic synthesis in Streptomyces hygroscopicus. Holt, T.G., Chang, C., Laurent-Winter, C., Murakami, T., Garrels, J.I., Davies, J.E., Thompson, C.J. Mol. Microbiol. (1992) [Pubmed]
  9. Consistent transcriptional silencing of 35S-driven transgenes in gentian. Mishiba, K., Nishihara, M., Nakatsuka, T., Abe, Y., Hirano, H., Yokoi, T., Kikuchi, A., Yamamura, S. Plant J. (2005) [Pubmed]
  10. The carboxyphosphonoenolpyruvate synthase-encoding gene from the bialaphos-producing organism Streptomyces hygroscopicus. Lee, S.H., Hidaka, T., Nakashita, H., Seto, H. Gene (1995) [Pubmed]
  11. Studies on the biosynthesis of bialaphos (SF-1293) Part 3. Production of phosphinic acid derivatives, MP-103, MP-104 and MP-105, by a blocked mutant of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. Seto, H., Imai, S., Tsuruoka, T., Ogawa, H., Satoh, A., Sasaki, T., Otake, N. Biochem. Biophys. Res. Commun. (1983) [Pubmed]
  12. Studies on the biosynthesis of bialaphos (SF-1293). 14. Nucleotide sequence of phosphoenolpyruvate phosphomutase gene isolated from a bialaphos producing organism, Streptomyces hygroscopicus, and its expression in Streptomyces lividans. Hidaka, T., Hidaka, M., Seto, H. J. Antibiot. (1992) [Pubmed]
  13. Studies on the biosynthesis of bialaphos (SF-1293). 4. Production of phosphonic acid derivatives, 2-hydroxyethylphosphonic acid, hydroxymethylphosphonic acid and phosphonoformic acid by blocked mutants of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. Imai, S., Seto, H., Sasaki, T., Tsuruoka, T., Ogawa, H., Satoh, A., Inouye, S., Niida, T., Otake, N. J. Antibiot. (1984) [Pubmed]
  14. Studies on the biosynthesis of bialaphos (SF-1293) 12. C-P bond formation mechanism of bialaphos: discovery of a P-methylation enzyme. Kamigiri, K., Hidaka, T., Imai, S., Murakami, T., Seto, H. J. Antibiot. (1992) [Pubmed]
  15. Recurrent onset of epigenetic silencing in rice harboring a multi-copy transgene. Kumpatla, S.P., Hall, T.C. Plant J. (1998) [Pubmed]
  16. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus. Raibaud, A., Zalacain, M., Holt, T.G., Tizard, R., Thompson, C.J. J. Bacteriol. (1991) [Pubmed]
  17. Carboxyphosphonoenolpyruvate phosphonomutase, a novel enzyme catalyzing C-P bond formation. Hidaka, T., Imai, S., Hara, O., Anzai, H., Murakami, T., Nagaoka, K., Seto, H. J. Bacteriol. (1990) [Pubmed]
  18. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Miller, M., Tagliani, L., Wang, N., Berka, B., Bidney, D., Zhao, Z.Y. Transgenic Res. (2002) [Pubmed]
  19. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Goldstein, A.L., McCusker, J.H. Yeast (1999) [Pubmed]
  20. Cosynthesis and protoplast fusion by mutants of bialaphos (AMPBA) producing Streptomyces hygroscopicus. Ogawa, H., Imai, S., Shimizu, T., Satoh, A., Kojima, M. J. Antibiot. (1983) [Pubmed]
  21. Generation of maize cell lines containing autonomously replicating maize streak virus-based gene vectors. Palmer, K.E., Thomson, J.A., Rybicki, E.P. Arch. Virol. (1999) [Pubmed]
  22. Decreased plasma and cerebrospinal fluid glutamine concentrations in a patient with bialaphos poisoning. Ohtake, T., Yasuda, H., Takahashi, H., Goto, T., Suzuki, K., Yonemura, K., Hishida, A. Human & experimental toxicology. (2001) [Pubmed]
  23. Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Streptomyces lividans and Escherichia coli. Strauch, E., Wohlleben, W., Pühler, A. Gene (1988) [Pubmed]
  24. The bialaphos biosynthetic genes of Streptomyces hygroscopicus: cloning and analysis of the genes involved in the alanylation step. Hara, O., Anzai, H., Imai, S., Kumada, Y., Murakami, T., Itoh, R., Takano, E., Satoh, A., Nagaoka, K. J. Antibiot. (1988) [Pubmed]
  25. The integrative transformation of Pleurotus ostreatus using bialaphos resistance as a dominant selectable marker. Yanai, K., Yonekura, K., Usami, H., Hirayama, M., Kajiwara, S., Yamazaki, T., Shishido, K., Adachi, T. Biosci. Biotechnol. Biochem. (1996) [Pubmed]
  26. Variation in transformation frequencies among six common wheat cultivars through particle bombardment of scutellar tissues. Takumi, S., Shimada, T. Genes Genet. Syst. (1997) [Pubmed]
  27. Co-integration, co-expression and co-segregation of an unlinked selectable marker gene and NtFAD3 gene in transgenic rice plants produced by particle bombardment. Wakita, Y., Otani, M., Iba, K., Shimada, T. Genes Genet. Syst. (1998) [Pubmed]
  28. Expression of immunogenic VP2 protein of infectious bursal disease virus in Arabidopsis thaliana. Wu, H., Singh, N.K., Locy, R.D., Scissum-Gunn, K., Giambrone, J.J. Biotechnol. Lett. (2004) [Pubmed]
WikiGenes - Universities