The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Trinitrochlorobenzene     1-chloro-2,3,4-trinitro- benzene

Synonyms: LS-29556, UN0155, AC1L1R53, Benzene, chlorotrinitro-, 1-chloro-2,3,4-trinitrobenzene, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Trinitrochlorobenzene


High impact information on Trinitrochlorobenzene


Chemical compound and disease context of Trinitrochlorobenzene


Biological context of Trinitrochlorobenzene


Anatomical context of Trinitrochlorobenzene


Associations of Trinitrochlorobenzene with other chemical compounds


Gene context of Trinitrochlorobenzene


Analytical, diagnostic and therapeutic context of Trinitrochlorobenzene


  1. Tumor necrosis factor is a critical mediator in hapten induced irritant and contact hypersensitivity reactions. Piguet, P.F., Grau, G.E., Hauser, C., Vassalli, P. J. Exp. Med. (1991) [Pubmed]
  2. Suppressor T cell circuits in contact sensitivity. II. Induction and characterization of an efferent-acting, antigen-specific, H-2-restricted, monoclonal T cell hybrid-derived suppressor factor specific for DNFB contact hypersensitivity. Miller, S.D. J. Immunol. (1984) [Pubmed]
  3. Scratching behavior in spontaneous- or allergic contact-induced dermatitis in NC/Nga mice. Takahashi, N., Arai, I., Honma, Y., Hashimoto, Y., Harada, M., Futaki, N., Sugimoto, M., Nakaike, S. Exp. Dermatol. (2005) [Pubmed]
  4. Interleukin-4 is a critical cytokine in contact sensitivity. Salerno, A., Dieli, F., Sireci, G., Bellavia, A., Asherson, G.L. Immunology (1995) [Pubmed]
  5. Early pregnancy factor treatment suppresses the inflammatory response and adhesion molecule expression in the spinal cord of SJL/J mice with experimental autoimmune encephalomyelitis and the delayed-type hypersensitivity reaction to trinitrochlorobenzene in normal BALB/c mice. Zhang, B., Walsh, M.D., Nguyen, K.B., Hillyard, N.C., Cavanagh, A.C., McCombe, P.A., Morton, H. J. Neurol. Sci. (2003) [Pubmed]
  6. Mice deficient in IL-1beta manifest impaired contact hypersensitivity to trinitrochlorobenzone. Shornick, L.P., De Togni, P., Mariathasan, S., Goellner, J., Strauss-Schoenberger, J., Karr, R.W., Ferguson, T.A., Chaplin, D.D. J. Exp. Med. (1996) [Pubmed]
  7. Induction of hapten-specific tolerance by interleukin 10 in vivo. Enk, A.H., Saloga, J., Becker, D., B1P6madzadeh, M., Knop, J. J. Exp. Med. (1994) [Pubmed]
  8. Two integrin-binding peptides abrogate T cell-mediated immune responses in vivo. Ferguson, T.A., Mizutani, H., Kupper, T.S. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  9. Granulocyte-macrophage colony-stimulating factor-based melanoma cell vaccines immunize syngeneic and allogeneic recipients via host dendritic cells. Schneeberger, A., Lührs, P., Kutil, R., Steinlein, P., Schild, H., Schmidt, W., Stingl, G. J. Immunol. (2003) [Pubmed]
  10. Analysis of dose response of trinitrochlorobenzene contact hypersensitivity induction in mice: pretreatment with cyclophosphamide reveals an optimal sensitizing dose. Sullivan, S., Bergstresser, P.R., Streilein, J.W. J. Invest. Dermatol. (1990) [Pubmed]
  11. Impaired contact hypersensitivity in macrophage migration inhibitory factor-deficient mice. Shimizu, T., Abe, R., Nishihira, J., Shibaki, A., Watanabe, H., Nakayama, T., Taniguchi, M., Ishibashi, T., Shimizu, H. Eur. J. Immunol. (2003) [Pubmed]
  12. Cross-reactive trinitrophenylated peptides as antigens for class II major histocompatibility complex-restricted T cells and inducers of contact sensitivity in mice. Limited T cell receptor repertoire. Kohler, J., Martin, S., Pflugfelder, U., Ruh, H., Vollmer, J., Weltzien, H.U. Eur. J. Immunol. (1995) [Pubmed]
  13. Chemical carcinogens and antigens induce immune suppression via Langerhans' cell depletion. Woods, G.M., Qu, M., Ragg, S.J., Muller, H.K. Immunology (1996) [Pubmed]
  14. Effects of TNCB sensitization in DS-Nh mice, serving as a model of atopic dermatitis, in comparison with NC/Nga mice. Matsukura, S., Aihara, M., Hirasawa, T., Ikezawa, Z. Int. Arch. Allergy Immunol. (2005) [Pubmed]
  15. Contact hypersensitivity in MHC class II-deficient mice depends on CD8 T lymphocytes primed by immunostimulating Langerhans cells. Bouloc, A., Cavani, A., Katz, S.I. J. Invest. Dermatol. (1998) [Pubmed]
  16. Ultraviolet-B dose-response curves for local and systemic immunosuppression are identical. Noonan, F.P., De Fabo, E.C. Photochem. Photobiol. (1990) [Pubmed]
  17. Effect of acute versus chronic Trichinella pseudospiralis infections on systemic cell-mediated immunity. Stewart, G.L., Niederkorn, J.Y., Kennedy, R.R., Mayhew, E. Int. J. Parasitol. (1991) [Pubmed]
  18. Quantitative polymerase chain reaction using an external control mRNA for determination of gene expression in a heterogeneous cell population. Shibata, M., Hariya, T., Hatao, M., Ashikaga, T., Ichikawa, H. Toxicol. Sci. (1999) [Pubmed]
  19. Suppressive effect of acupuncture on delayed type hypersensitivity to trinitrochlorobenzene and involvement of opiate receptors. Kasahara, T., Wu, Y., Sakurai, Y., Oguchi, K. Int. J. Immunopharmacol. (1992) [Pubmed]
  20. TNP-specific Lyt-2+ cytolytic T cell clones preferentially respond to TNP-conjugated epidermal cells. Shimada, S., Katz, S.I. J. Immunol. (1985) [Pubmed]
  21. Orally induced tolerance generates an efferently acting suppressor T cell and an acceptor T cell that together down-regulate contact sensitivity. Gautam, S.C., Battisto, J.R. J. Immunol. (1985) [Pubmed]
  22. Down-regulation of adoptive adjuvant-induced arthritis by suppressor factor(s). Nanishi, F., Battisto, J.R. Arthritis Rheum. (1991) [Pubmed]
  23. Enhanced TNP-reactive helper T cell activity and its utilization in the induction of amplified tumor immunity that results in tumor regression. Fujiwara, H., Moriyama, Y., Suda, T., Tsuchida, T., Shearer, G.M., Hamaoka, T. J. Immunol. (1984) [Pubmed]
  24. Production of hapten-specific T cell hybridomas and their use to study the effect of ultraviolet B irradiation on the development of contact hypersensitivity. Bigby, M., Vargas, R., Sy, M.S. J. Immunol. (1989) [Pubmed]
  25. Establishment of a tumor-specific immunotherapy model utilizing TNP-reactive helper T cell activity and its application to the autochthonous tumor system. Fujiwara, H., Aoki, H., Yoshioka, T., Tomita, S., Ikegami, R., Hamaoka, T. J. Immunol. (1984) [Pubmed]
  26. UVA-induced immune suppression through an oxidative pathway. Iwai, I., Hatao, M., Naganuma, M., Kumano, Y., Ichihashi, M. J. Invest. Dermatol. (1999) [Pubmed]
  27. Langerhans' cells produce type IV collagenase (MMP-9) following epicutaneous stimulation with haptens. Kobayashi, Y. Immunology (1997) [Pubmed]
  28. Exacerbated and prolonged allergic and non-allergic inflammatory cutaneous reaction in mice with targeted interleukin-18 expression in the skin. Kawase, Y., Hoshino, T., Yokota, K., Kuzuhara, A., Kirii, Y., Nishiwaki, E., Maeda, Y., Takeda, J., Okamoto, M., Kato, S., Imaizumi, T., Aizawa, H., Yoshino, K. J. Invest. Dermatol. (2003) [Pubmed]
  29. Impaired contact hypersensitivity to trinitrochlorobenzene in interleukin-4-deficient mice. Dieli, F., Sireci, G., Scirè, E., Salerno, A., Bellavia, A. Immunology (1999) [Pubmed]
  30. Role of interferon-gamma in contact hypersensitivity assessed in interferon-gamma receptor-deficient mice. Saulnier, M., Huang, S., Aguet, M., Ryffel, B. Toxicology (1995) [Pubmed]
  31. Keratinocyte-derived, CD80-mediated costimulation is associated with hapten-specific IgE production during contact hypersensitivity to TH1 haptens. Burns, R., Luzina, I., Nasir, A., Haidaris, C.G., Barth, R.K., Gaspari, A.A. J. Allergy Clin. Immunol. (2005) [Pubmed]
  32. Plasma extravasation induced by dietary supplemented histamine in histamine-free mice. Ohtsu, H., Kuramasu, A., Tanaka, S., Terui, T., Hirasawa, N., Hara, M., Makabe-Kobayashi, Y., Yamada, N., Yanai, K., Sakurai, E., Okada, M., Ohuchi, K., Ichikawa, A., Nagy, A., Watanabe, T. Eur. J. Immunol. (2002) [Pubmed]
  33. Phenotypic and functional characteristics of in vivo-activated Langerhans cells. Aiba, S., Katz, S.I. J. Immunol. (1990) [Pubmed]
  34. Disparate effects of in vitro low-dose UVB irradiation on intravenous immunization with purified epidermal cell subpopulations for the induction of contact hypersensitivity. Cruz, P.D., Nixon-Fulton, J., Tigelaar, R.E., Bergstresser, P.R. J. Invest. Dermatol. (1989) [Pubmed]
  35. Imaging of delayed-type hypersensitivity reaction by PET and 18F-galacto-RGD. Pichler, B.J., Kneilling, M., Haubner, R., Braumüller, H., Schwaiger, M., Röcken, M., Weber, W.A. J. Nucl. Med. (2005) [Pubmed]
  36. Peptide immunization indicates that CD8+ T cells are the dominant effector cells in trinitrophenyl-specific contact hypersensitivity. Martin, S., Lappin, M.B., Kohler, J., Delattre, V., Leicht, C., Preckel, T., Simon, J.C., Weltzien, H.U. J. Invest. Dermatol. (2000) [Pubmed]
WikiGenes - Universities