The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Telithromycin     (1R,2R,4R,6R,7R,8R,10S,13R,14S )-7-[(2S,3R...

Synonyms: AC1NUZ37, TEL
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Telithromycin

 

Psychiatry related information on Telithromycin

  • With high efficacy and bacterial eradication rates, good tolerability and convenient once-daily administration, telithromycin therapy should result in increased patient compliance and improved outcomes, thereby minimizing the risk of developing antibacterial resistance [5].
 

High impact information on Telithromycin

  • The lax interaction of the M. tuberculosis Erm(37) with its rRNA produces a unique methylation pattern and confers resistance to the ketolide telithromycin [6].
  • Telithromycin, an antimicrobial agent, inhibits CYP3A4 in vitro and in vivo [7].
  • Almost all (99.2%) dual erm(B) + mef(A) macrolide-resistant isolates exhibited multidrug resistance, whereas 98.6% and 99.0% were levofloxacin- and telithromycin-susceptible, respectively [8].
  • RESULTS: ANOVA showed that telithromycin did not increase QT interval at any dose compared with placebo [9].
  • CONCLUSIONS: Telithromycin administered as repeated doses of 800 mg (recommended doses) or as single doses of up to 3 times this recommended dose did not increase the QT interval at any heart rate at rest and during effort [9].
 

Chemical compound and disease context of Telithromycin

 

Biological context of Telithromycin

  • Clinical pharmacokinetics of telithromycin, the first ketolide antibacterial [15].
  • To date, 86 of 7,746 macrolide-resistant Streptococcus pneumoniae isolates from 1999 to 2002 PROTEKT (Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin) surveillance studies were negative for methylase and efflux mechanisms [16].
  • Telithromycin MICs were >or=1 microg/ml for 16% of the isolates, and for 99% of these isolates the MICs of all macrolides tested were >or=256 microg/ml; all of these isolates had the constitutive macrolide-lincosamide-streptogramin B phenotype [17].
  • The maximal efficacy (the 95% effective dose) against this cohort of S. pneumoniae strains and bacterial inhibition (stasis) of telithromycin were predicted by ratios of the AUC for the free drug concentration/MIC of approximately 1,000 and 200, respectively [18].
  • The once-daily administration of telithromycin is likely to limit the potential for drug interactions and clinically significant increases in exposure [15].
 

Anatomical context of Telithromycin

 

Associations of Telithromycin with other chemical compounds

 

Gene context of Telithromycin

  • Involvement of the drug transporters p glycoprotein and multidrug resistance-associated protein Mrp2 in telithromycin transport [28].
  • Moreover, the biliary clearance of telithromycin was significantly decreased by 80% in Eisai hyperbilirubinemic mutant rats with a hereditary deficiency in Mrp2, indicating that Mrp2, as well as P glycoprotein, plays an important role in the biliary excretion of telithromycin [28].
  • Secretion of each cytokine was significantly increased by LPS alone, whereas treatment with telithromycin significantly inhibited secretion of IL-1alpha and TNF-alpha but not secretion of IL-1beta, IL-6, and IL-10 [20].
  • Telithromycin is metabolised via cytochrome P450 (CYP) 3A4 and non-CYP pathways [15].
  • No modification of telithromycin accumulation was detected in E. aerogenes acrAB or tolC derivatives compared to that in the parental strain [29].
 

Analytical, diagnostic and therapeutic context of Telithromycin

References

  1. Ketolide resistance in Streptococcus pyogenes correlates with the degree of rRNA dimethylation by Erm. Douthwaite, S., Jalava, J., Jakobsen, L. Mol. Microbiol. (2005) [Pubmed]
  2. Telithromycin-resistant Streptococcus pneumoniae. Goldstein, F., Vidal, B., Kitzis, M.D. Emerging Infect. Dis. (2005) [Pubmed]
  3. Telithromycin new product overview. File, T.M. J. Allergy Clin. Immunol. (2005) [Pubmed]
  4. Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influenzae. Bogdanovich, T., Bozdogan, B., Appelbaum, P.C. Antimicrob. Agents Chemother. (2006) [Pubmed]
  5. Clinical management of respiratory tract infections in the community: experience with telithromycin. Quintiliani, R. Infection (2001) [Pubmed]
  6. Methyltransferase Erm(37) slips on rRNA to confer atypical resistance in Mycobacterium tuberculosis. Madsen, C.T., Jakobsen, L., Buriánková, K., Doucet-Populaire, F., Pernodet, J.L., Douthwaite, S. J. Biol. Chem. (2005) [Pubmed]
  7. Telithromycin, but not montelukast, increases the plasma concentrations and effects of the cytochrome P450 3A4 and 2C8 substrate repaglinide. Kajosaari, L.I., Niemi, M., Backman, J.T., Neuvonen, P.J. Clin. Pharmacol. Ther. (2006) [Pubmed]
  8. Emergence and spread of Streptococcus pneumoniae with erm(B) and mef(A) resistance. Farrell, D.J., Jenkins, S.G., Brown, S.D., Patel, M., Lavin, B.S., Klugman, K.P. Emerging Infect. Dis. (2005) [Pubmed]
  9. Effect of single and repeated oral doses of telithromycin on cardiac QT interval in healthy subjects. Démolis, J.L., Vacheron, F., Cardus, S., Funck-Brentano, C. Clin. Pharmacol. Ther. (2003) [Pubmed]
  10. Resistance to erythromycin and telithromycin in Streptococcus pyogenes isolates obtained between 1999 and 2002 from Greek children with tonsillopharyngitis: phenotypic and genotypic analysis. Grivea, I.N., Al-Lahham, A., Katopodis, G.D., Syrogiannopoulos, G.A., Reinert, R.R. Antimicrob. Agents Chemother. (2006) [Pubmed]
  11. Efficacy of telithromycin (HMR 3647) against enterococci in a mouse peritonitis model. Singh, K.V., Zscheck, K.K., Murray, B.E. Antimicrob. Agents Chemother. (2000) [Pubmed]
  12. Activity of telithromycin (HMR 3647) against anaerobic bacteria compared to those of eight other agents by time-kill methodology. Credito, K.L., Ednie, L.M., Jacobs, M.R., Appelbaum, P.C. Antimicrob. Agents Chemother. (1999) [Pubmed]
  13. Efficacy of macrolides and telithromycin against leptospirosis in a hamster model. Moon, J.E., Ellis, M.W., Ellis, M.C., Griffith, M.E., Hawley, J.S., Rivard, R.G., McCall, S., Hospenthal, D.R., Murray, C.K. Antimicrob. Agents Chemother. (2006) [Pubmed]
  14. Activities of cethromycin and telithromycin against recent North American isolates of Streptococcus pneumoniae. Jorgensen, J.H., Crawford, S.A., McElmeel, M.L., Whitney, C.G. Antimicrob. Agents Chemother. (2004) [Pubmed]
  15. Clinical pharmacokinetics of telithromycin, the first ketolide antibacterial. Shi, J., Montay, G., Bhargava, V.O. Clinical pharmacokinetics. (2005) [Pubmed]
  16. In vitro activities of telithromycin, linezolid, and quinupristin-dalfopristin against Streptococcus pneumoniae with macrolide resistance due to ribosomal mutations. Farrell, D.J., Morrissey, I., Bakker, S., Buckridge, S., Felmingham, D. Antimicrob. Agents Chemother. (2004) [Pubmed]
  17. Telithromycin- and fluoroquinolone-resistant Streptococcus pneumoniae in Taiwan with high prevalence of resistance to macrolides and beta-lactams: SMART program 2001 data. Hsueh, P.R., Teng, L.J., Wu, T.L., Yang, D., Huang, W.K., Shyr, J.M., Chuang, Y.C., Wan, J.H., Yan, J.J., Lu, J.J., Wu, J.J., Ko, W.C., Chang, F.Y., Yang, Y.C., Lau, Y.J., Liu, Y.C., Lee, C.M., Leu, H.S., Liu, C.Y., Luh, K.T. Antimicrob. Agents Chemother. (2003) [Pubmed]
  18. Pharmacodynamic profile of telithromycin against macrolide- and fluoroquinolone-resistant Streptococcus pneumoniae in a neutropenic mouse thigh model. Tessier, P.R., Mattoes, H.M., Dandekar, P.K., Nightingale, C.H., Nicolau, D.P. Antimicrob. Agents Chemother. (2005) [Pubmed]
  19. Bronchopulmonary disposition of the ketolide telithromycin (HMR 3647). Muller-Serieys, C., Soler, P., Cantalloube, C., Lemaitre, F., Gia, H.P., Brunner, F., Andremont, A. Antimicrob. Agents Chemother. (2001) [Pubmed]
  20. Inhibition of secretion of interleukin-1alpha and tumor necrosis factor alpha by the ketolide antibiotic telithromycin. Araujo, F.G., Slifer, T.L., Remington, J.S. Antimicrob. Agents Chemother. (2002) [Pubmed]
  21. Recovery of interfering bacteria in the nasopharynx following antimicrobial therapy of acute maxillary sinusitis with telithromycin or amoxicillin-clavulanate. Brook, I., Hausfeld, J.N. Antimicrob. Agents Chemother. (2005) [Pubmed]
  22. Pharmacokinetics of telithromycin in plasma and soft tissues after single-dose administration to healthy volunteers. Gattringer, R., Urbauer, E., Traunmüller, F., Zeitlinger, M., Dehghanyar, P., Zeleny, P., Graninger, W., Müller, M., Joukhadar, C. Antimicrob. Agents Chemother. (2004) [Pubmed]
  23. Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages. Seral, C., Van Bambeke, F., Tulkens, P.M. Antimicrob. Agents Chemother. (2003) [Pubmed]
  24. In vitro activities of the novel ketolide telithromycin (HMR 3647) against erythromycin-resistant Streptococcus species. Jalava, J., Kataja, J., Seppälä, H., Huovinen, P. Antimicrob. Agents Chemother. (2001) [Pubmed]
  25. In vitro susceptibilities of rapidly growing mycobacteria to telithromycin (HMR 3647) and seven other antimicrobials. Fernández-Roblas, R., Esteban, J., Cabria, F., López, J.C., Jiménez, M.S., Soriano, F. Antimicrob. Agents Chemother. (2000) [Pubmed]
  26. In vitro selection and characterization of resistance to macrolides and related antibiotics in Mycoplasma pneumoniae. Pereyre, S., Guyot, C., Renaudin, H., Charron, A., Bébéar, C., Bébéar, C.M. Antimicrob. Agents Chemother. (2004) [Pubmed]
  27. Emergence of resistance in normal human aerobic commensal flora during telithromycin and amoxicillin-clavulanic acid treatments. Crémieux, A.C., Muller-Serieys, C., Panhard, X., Delatour, F., Tchimichkian, M., Mentre, F., Andremont, A. Antimicrob. Agents Chemother. (2003) [Pubmed]
  28. Involvement of the drug transporters p glycoprotein and multidrug resistance-associated protein Mrp2 in telithromycin transport. Yamaguchi, S., Zhao, Y.L., Nadai, M., Yoshizumi, H., Cen, X., Torita, S., Takagi, K., Takagi, K., Hasegawa, T. Antimicrob. Agents Chemother. (2006) [Pubmed]
  29. The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli. Chollet, R., Chevalier, J., Bryskier, A., Pagès, J.M. Antimicrob. Agents Chemother. (2004) [Pubmed]
  30. Pharmacokinetics of the new ketolide telithromycin (HMR 3647) administered in ascending single and multiple doses. Namour, F., Wessels, D.H., Pascual, M.H., Reynolds, D., Sultan, E., Lenfant, B. Antimicrob. Agents Chemother. (2001) [Pubmed]
 
WikiGenes - Universities