The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Pyroglutamate     5-oxopyrrolidine-2-carboxylic acid

Synonyms: PubChem9493, SureCN15791, CHEMBL284718, AG-D-96299, Proline,5-oxo-, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Pidolic acid

  • 5-Oxoprolinuria (pyroglutamic aciduria) resulting from glutathione synthetase (GSS) deficiency is an inherited autosomal recessive disorder characterized, in its severe form, by massive urinary excretion of 5-oxoproline, metabolic acidosis, haemolytic anaemia and central nervous system damage [1].
  • The mechanism of biosynthesis of NH2-terminal pyroglutamic acid has been studied in a mouse plasmacytoma (RPC-20) which produces an immunoglobulin light (lambda) chain containing NH2-terminal pyroglutamic acid [2].
  • (3S,5S)-Carbapenam carboxylic acid was prepared from L-pyroglutamic acid to unambiguously establish its absolute configuration as identical to the natural product isolated from Serratia marcescens and from overexpression of the biosynthetic genes carAB in Escherichia coli [3].
  • In additional studies of salicylic acid (SA) and pyroglutamic acid (PGA), the hands of volunteers were contaminated with rhinovirus at defined times after application of the acid, and then volunteers attempted to inoculate the nasal mucosa with one hand and quantitative viral cultures were done on the other hand [4].
  • The reagents in the five kits designed to detect the enzyme pyroglutamic acid arylamidase in Streptococcus pyogenes reacted positively with S. pyogenes (group A streptococcus); however, the reagents also reacted positively with all group D enterococcal streptococci and with about half of the staphylococcal strains treated [5].
 

Psychiatry related information on Pidolic acid

 

High impact information on Pidolic acid

  • Amino acid sequence following removal of N-terminal pyroglutamate is presented [10].
  • Physalaemin and tumor peptide had similar retention times on high-performance liquid chromatography after chemical and enzymic modifications that included pH changes, oxone oxidation, use of a hydrophilic ion-pairing reagent, and digestion with trypsin and pyroglutamate aminopeptidase [11].
  • The extracellular domain of CLAC-P/collagen type XXV was secreted by furin convertase, and the N-terminus of CLAC deposited in AD brains was pyroglutamate modified [12].
  • Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation [13].
  • The short chains of gNa and gNa' and of BngNAP1 and BngNAP1' differ by the replacement of N-terminal proline by pyroglutamic acid; the long chains of gNaA and BngNAP1B contain a six amino acid stretch, MQGQQM, which is present in gNa (according to its DNA sequence) but absent from BngNAP1 and BngNAP1C [14].
 

Chemical compound and disease context of Pidolic acid

 

Biological context of Pidolic acid

 

Anatomical context of Pidolic acid

 

Associations of Pidolic acid with other chemical compounds

 

Gene context of Pidolic acid

  • By a combination of Edman degradation and mass spectrometry, it was established that GDCF-2 comprises 76 amino acid residues, commencing at the N terminus with pyroglutamic acid [35].
  • Cyclization of Gln1 to form pyroglutamate (pE) limited the site of cross-linking in the mutant to Lys45, permitting identification of receptor residues that are proximal to this residue of bound EGF [36].
  • Although a few structures of CC chemokines have been reported, none of these was determined with the N-terminal pyroglutamic acid residue (pGlu1) and a complete C-terminus. pGlu1 is essential for the chemotactic activity of MCP-2 [37].
  • To analyze the postsecretory processing of Abeta, we used the same in vivo paradigm and showed that Abeta1-40 and Abeta1-42 were processed at their N termini to yield variants starting at pyroglutamate, and at their C termini to yield variants ending at Val40 and at Val39 [38].
  • The results demonstrate that the structure of the predominant relaxin in human semen plasma is derived from the product of the H2 gene, consisting of a N-terminal pyroglutamic acid A-24 A chain and a mixture of B-26 and B-27 B chains [39].
 

Analytical, diagnostic and therapeutic context of Pidolic acid

  • The complete primary structure of aphrodisin was determined by sequence analysis of intact aphrodisin after unblocking the amino terminus with pyroglutamate aminopeptidase and from peptides generated by trypsin and Lys-C digests [40].
  • Fast atom bombardment mass spectrometry (FABMS) was used to demonstrate that the amino-terminal residues of peptides 25-60, and 25-90 are pyroglutamic acid, a modification which precludes Edman degradation of these peptides [41].
  • Titrations of each component by the other suggest that phosphorylated 5-oxoproline-bound Component A is the entity that interacts with Component B [42].
  • The amino acid sequences were determined by automated Edman degradation following proteolytic digestion of the isolated proteins and HPLC separation of the resulting fragments and by amino-terminal sequencing after treatment with pyroglutamate aminopeptidase [43].
  • The MALDI in-source decay measurements combined with nanoESI (nanoelectrospay ionization) MS/MS measurements obtained after specific proteolysis of SBP, allowed the exact positioning of a single N-linked carbohydrate group, and the identification of a pyroglutamate residue at the sequence N-terminus [44].

References

  1. Mutations in the glutathione synthetase gene cause 5-oxoprolinuria. Shi, Z.Z., Habib, G.M., Rhead, W.J., Gahl, W.A., He, X., Sazer, S., Lieberman, M.W. Nat. Genet. (1996) [Pubmed]
  2. Initiation by methionine of mouse immunoglobulin light chain containing NH-2terminal pyroglutamic acid. Prasad, C., Peterkofsky, A. J. Biol. Chem. (1975) [Pubmed]
  3. Carbapenem biosynthesis: confirmation of stereochemical assignments and the role of CarC in the ring stereoinversion process from L-proline. Stapon, A., Li, R., Townsend, C.A. J. Am. Chem. Soc. (2003) [Pubmed]
  4. Efficacy of organic acids in hand cleansers for prevention of rhinovirus infections. Turner, R.B., Biedermann, K.A., Morgan, J.M., Keswick, B., Ertel, K.D., Barker, M.F. Antimicrob. Agents Chemother. (2004) [Pubmed]
  5. Specificity study of kits for detection of group A streptococci directly from throat swabs. Facklam, R.R. J. Clin. Microbiol. (1987) [Pubmed]
  6. Generation of amyloid beta peptide with pyroglutamate at position 3 in primary cortical neurons. Shirotani, K., Tsubuki, S., Lee, H.J., Maruyama, K., Saido, T.C. Neurosci. Lett. (2002) [Pubmed]
  7. Striatal deficiency of L-pyroglutamic acid in Huntington's disease is accompanied by increased plasma levels. Uhlhaas, S., Lange, H. Brain Res. (1988) [Pubmed]
  8. Pyroglutamic acid improves the age associated memory impairment. Grioli, S., Lomeo, C., Quattropani, M.C., Spignoli, G., Villardita, C. Fundamental & clinical pharmacology. (1990) [Pubmed]
  9. Capillary electrophoresis for caffeine and pyroglutamate determination in coffees study of the in vivo effect on learning and locomotor activity in mice. Maeso, N., del Castillo, C., Cornejo, L., García-Acicollar, M., Alguacil, L.F., Barbas, C. Journal of pharmaceutical and biomedical analysis. (2006) [Pubmed]
  10. Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver--conditioned medium. Zsebo, K.M., Wypych, J., McNiece, I.K., Lu, H.S., Smith, K.A., Karkare, S.B., Sachdev, R.K., Yuschenkoff, V.N., Birkett, N.C., Williams, L.R. Cell (1990) [Pubmed]
  11. Physalaemin: an amphibian tachykinin in human lung small-cell carcinoma. Lazarus, L.H., DiAugustine, R.P., Jahnke, G.D., Hernandez, O. Science (1983) [Pubmed]
  12. CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC-P/collagen type XXV. Hashimoto, T., Wakabayashi, T., Watanabe, A., Kowa, H., Hosoda, R., Nakamura, A., Kanazawa, I., Arai, T., Takio, K., Mann, D.M., Iwatsubo, T. EMBO J. (2002) [Pubmed]
  13. Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. Huang, K.F., Liu, Y.L., Cheng, W.J., Ko, T.P., Wang, A.H. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  14. Mass spectrometric amino acid sequencing of a mixture of seed storage proteins (napin) from Brassica napus, products of a multigene family. Gehrig, P.M., Krzyzaniak, A., Barciszewski, J., Biemann, K. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  15. A Novel Two-domain Architecture Within the Amino Acid Kinase Enzyme Family Revealed by the Crystal Structure of Escherichia coli Glutamate 5-kinase. Marco-Marín, C., Gil-Ortiz, F., Pérez-Arellano, I., Cervera, J., Fita, I., Rubio, V. J. Mol. Biol. (2007) [Pubmed]
  16. High-resolution proton nuclear magnetic resonance spectroscopy of ovarian cyst fluid. Boss, E.A., Moolenaar, S.H., Massuger, L.F., Boonstra, H., Engelke, U.F., de Jong, J.G., Wevers, R.A. NMR in biomedicine. (2000) [Pubmed]
  17. Does monosodium glutamate cause flushing (or merely "glutamania")? Wilkin, J.K. J. Am. Acad. Dermatol. (1986) [Pubmed]
  18. Hawkinsinuria--identification of quinolacetic acid and pyroglutamic acid during an acidotic phase. Hocart, C.H., Halpern, B., Hick, L.A., Wong, C.O. J. Chromatogr. (1983) [Pubmed]
  19. Excessive excretion of 5-oxoproline and decreased levels of blood glutathione in type II diabetes mellitus. Forrester, T.E., Badaloo, V., Bennett, F.I., Jackson, A.A. European journal of clinical nutrition. (1990) [Pubmed]
  20. Study of the 5-oxoprolinase reaction by 13C NMR. Li, L.Y., Seddon, A.P., Meister, A., Inubushi, T. J. Biol. Chem. (1989) [Pubmed]
  21. Structural characterization of native mouse zona pellucida proteins using mass spectrometry. Boja, E.S., Hoodbhoy, T., Fales, H.M., Dean, J. J. Biol. Chem. (2003) [Pubmed]
  22. Familial Danish dementia: co-existence of Danish and Alzheimer amyloid subunits (ADan AND A{beta}) in the absence of compact plaques. Tomidokoro, Y., Lashley, T., Rostagno, A., Neubert, T.A., Bojsen-Møller, M., Braendgaard, H., Plant, G., Holton, J., Frangione, B., Révész, T., Ghiso, J. J. Biol. Chem. (2005) [Pubmed]
  23. Resolution of 5-oxo-L-prolinase into a 5-oxo-L-proline-dependent ATPase and a coupling protein. Seddon, A.P., Li, L.Y., Meister, A. J. Biol. Chem. (1984) [Pubmed]
  24. Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. Galvez, A., Gimenez-Gallego, G., Reuben, J.P., Roy-Contancin, L., Feigenbaum, P., Kaczorowski, G.J., Garcia, M.L. J. Biol. Chem. (1990) [Pubmed]
  25. Post-translational modification of bovine pro-opiomelanocortin. Tyrosine sulfation and pyroglutamate formation, a mass spectrometric study. Bateman, A., Solomon, S., Bennett, H.P. J. Biol. Chem. (1990) [Pubmed]
  26. In vitro digestion of gliadin by gastrointestinal enzymes and by pyrrolidonecarboxylate peptidase. Caldwell, K.A. Am. J. Clin. Nutr. (1980) [Pubmed]
  27. Pyroglutamate-modified amyloid beta-peptides--AbetaN3(pE)--strongly affect cultured neuron and astrocyte survival. Russo, C., Violani, E., Salis, S., Venezia, V., Dolcini, V., Damonte, G., Benatti, U., D'Arrigo, C., Patrone, E., Carlo, P., Schettini, G. J. Neurochem. (2002) [Pubmed]
  28. Formation of N-pyroglutamyl peptides from N-Glu and N-Gln precursors in Aplysia neurons. Garden, R.W., Moroz, T.P., Gleeson, J.M., Floyd, P.D., Li, L., Rubakhin, S.S., Sweedler, J.V. J. Neurochem. (1999) [Pubmed]
  29. Toxicity of pyroglutaminated amyloid beta-peptides 3(pE)-40 and -42 is similar to that of A beta1-40 and -42. Tekirian, T.L., Yang, A.Y., Glabe, C., Geddes, J.W. J. Neurochem. (1999) [Pubmed]
  30. Partial amino-acid sequence of the precursor of an immunoglobulin light chain containing NH2-terminal pyroglutamic acid. Burstein, Y., Kantour, F., Schechter, I. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  31. Characterization of a pyroglutamate aminopeptidase from rat serum that degrades thyrotropin-releasing hormone. Taylor, W.L., Dixon, J.E. J. Biol. Chem. (1978) [Pubmed]
  32. Functional annotation of two orphan G-protein-coupled receptors, Drostar1 and -2, from Drosophila melanogaster and their ligands by reverse pharmacology. Kreienkamp, H.J., Larusson, H.J., Witte, I., Roeder, T., Birgul, N., Honck, H.H., Harder, S., Ellinghausen, G., Buck, F., Richter, D. J. Biol. Chem. (2002) [Pubmed]
  33. 5-Oxo-L-prolinase (L-pyroglutamate hydrolase). Purification and catalytic properties. Van Der Werf, P., Griffith, O.W., Meister, A. J. Biol. Chem. (1975) [Pubmed]
  34. Primary structure of human plasma fibronectin. The 29,000-dalton NH2-terminal domain. Garcia-Pardo, A., Pearlstein, E., Frangione, B. J. Biol. Chem. (1983) [Pubmed]
  35. Complete amino acid sequence of a human monocyte chemoattractant, a putative mediator of cellular immune reactions. Robinson, E.A., Yoshimura, T., Leonard, E.J., Tanaka, S., Griffin, P.R., Shabanowitz, J., Hunt, D.F., Appella, E. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  36. Identification of residues of the epidermal growth factor receptor proximal to residue 45 of bound epidermal growth factor. Summerfield, A.E., Hudnall, A.K., Lukas, T.J., Guyer, C.A., Staros, J.V. J. Biol. Chem. (1996) [Pubmed]
  37. Complete crystal structure of monocyte chemotactic protein-2, a CC chemokine that interacts with multiple receptors. Blaszczyk, J., Coillie, E.V., Proost, P., Damme, J.V., Opdenakker, G., Bujacz, G.D., Wang, J.M., Ji, X. Biochemistry (2000) [Pubmed]
  38. Amyloid beta-protein (Abeta) 1-40 but not Abeta1-42 contributes to the experimental formation of Alzheimer disease amyloid fibrils in rat brain. Shin, R.W., Ogino, K., Kondo, A., Saido, T.C., Trojanowski, J.Q., Kitamoto, T., Tateishi, J. J. Neurosci. (1997) [Pubmed]
  39. Human seminal relaxin is a product of the same gene as human luteal relaxin. Winslow, J.W., Shih, A., Bourell, J.H., Weiss, G., Reed, B., Stults, J.T., Goldsmith, L.T. Endocrinology (1992) [Pubmed]
  40. The primary structure of aphrodisin. Henzel, W.J., Rodriguez, H., Singer, A.G., Stults, J.T., Macrides, F., Agosta, W.C., Niall, H. J. Biol. Chem. (1988) [Pubmed]
  41. Post-translational processing of preprosomatostatin-II examined using fast atom bombardment mass spectrometry. Andrews, P.C., Nichols, R., Dixon, J.E. J. Biol. Chem. (1987) [Pubmed]
  42. Interaction of the protein components of 5-oxoprolinase. Substrate-dependent enzyme complex formation. Li, L.Y., Seddon, A.P., Meister, A. J. Biol. Chem. (1988) [Pubmed]
  43. Complete amino acid sequence determinations demonstrate identity of the urinary Bence Jones protein (BJP-DIA) and the amyloid fibril protein (AL-DIA) in a case of AL-amyloidosis. Klafki, H.W., Kratzin, H.D., Pick, A.I., Eckart, K., Karas, M., Hilschmann, N. Biochemistry (1992) [Pubmed]
  44. Strain-based sequence variations and structure analysis of murine prostate specific spermine binding protein using mass spectrometry. Chaurand, P., DaGue, B.B., Ma, S., Kasper, S., Caprioli, R.M. Biochemistry (2001) [Pubmed]
 
WikiGenes - Universities