The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

glutamate     (2S)-2-aminopentanedioate

Synonyms: Glutamat, AC1NUTDR, AG-G-99951, CHEBI:29988, CTK5E1370, ...
This record was replaced with 33032.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of POLYGLUTAMIC ACID


Psychiatry related information on POLYGLUTAMIC ACID


High impact information on POLYGLUTAMIC ACID

  • Excitatory amino-acid carrier 1 (EAAC1) is a high-affinity Na+-dependent L-glutamate/D,L-aspartate cell-membrane transport protein [11].
  • The cloned receptors negatively couple to adenylyl cyclase and show sequence similarity to the metabotropic receptors for the excitatory neurotransmitter L-glutamate [12].
  • Here we report that, unlike AMPA which stimulates, kainate elicits a dose-dependent decrease in L-glutamate release from rat hippocampal synaptosomes and also depresses glutamatergic synaptic transmission [13].
  • The transport activity encoded by EAAT4 has high apparent affinity for L-aspartate and L-glutamate, and has a pharmacological profile consistent with previously described cerebellar transport activities [14].
  • Expression of this cDNA in transfected HeLa cells indicates that L-glutamate accumulation requires external sodium and internal potassium and transport shows the expected stereospecificity [15].

Chemical compound and disease context of POLYGLUTAMIC ACID


Biological context of POLYGLUTAMIC ACID

  • Fodrin has been hypothesized to regulate the number of receptor binding sites on neuronal membranes for the putative neurotransmitter L-glutamate [21].
  • In order to study the kinetics of release of endogenous L-glutamate from guinea pig cerebral cortical synaptosomes we have devised a continuous enzymatic assay [22].
  • Recent study of the ventral muscle fibres in the larvae of the beetle, Tenebrio molitor, has revealed that the transmitter action can be mimicked by the iontophoretic application of L-glutamate to the junctional sites at which the extracellular excitatory postsynaptic potentials ( could be recorded (D.Y. and H.W., unpublished observation) [23].
  • We now report that chronic intracortical administration of L-glutamate during a period of monocular vision imposed on young kittens largely prevents the ocular dominance shift which normally occurs under these circumstances [24].
  • In hippocampal neurons, L-glutamate, an inducer of Ca2+ influx and calcineurin activation, triggered mitochondrial targeting of BAD and apoptosis, which were both suppressible by coexpression of a dominant-inhibitory mutant of calcineurin or pharmacological inhibitors of this phosphatase [25].

Anatomical context of POLYGLUTAMIC ACID


Associations of POLYGLUTAMIC ACID with other chemical compounds




Analytical, diagnostic and therapeutic context of POLYGLUTAMIC ACID


  1. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Turski, L., Bressler, K., Rettig, K.J., Löschmann, P.A., Wachtel, H. Nature (1991) [Pubmed]
  2. Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Wahlestedt, C., Golanov, E., Yamamoto, S., Yee, F., Ericson, H., Yoo, H., Inturrisi, C.E., Reis, D.J. Nature (1993) [Pubmed]
  3. Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Talman, W.T., Perrone, M.H., Reis, D.J. Science (1980) [Pubmed]
  4. Excitatory amino acid transporters: a family in flux. Seal, R.P., Amara, S.G. Annu. Rev. Pharmacol. Toxicol. (1999) [Pubmed]
  5. ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. Sekine, S., Nureki, O., Dubois, D.Y., Bernier, S., Chênevert, R., Lapointe, J., Vassylyev, D.G., Yokoyama, S. EMBO J. (2003) [Pubmed]
  6. L-phosphoserine, a metabolite elevated in Alzheimer's disease, interacts with specific L-glutamate receptor subtypes. Klunk, W.E., McClure, R.J., Pettegrew, J.W. J. Neurochem. (1991) [Pubmed]
  7. Self-referencing ceramic-based multisite microelectrodes for the detection and elimination of interferences from the measurement of L-glutamate and other analytes. Burmeister, J.J., Gerhardt, G.A. Anal. Chem. (2001) [Pubmed]
  8. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep. Datta, S., Siwek, D.F. J. Neurophysiol. (1997) [Pubmed]
  9. Excitation of the pedunculopontine tegmental NMDA receptors induces wakefulness and cortical activation in the rat. Datta, S., Patterson, E.H., Spoley, E.E. J. Neurosci. Res. (2001) [Pubmed]
  10. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Hynd, M.R., Scott, H.L., Dodd, P.R. Neurochem. Int. (2004) [Pubmed]
  11. Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Lin, C.I., Orlov, I., Ruggiero, A.M., Dykes-Hoberg, M., Lee, A., Jackson, M., Rothstein, J.D. Nature (2001) [Pubmed]
  12. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Kaupmann, K., Huggel, K., Heid, J., Flor, P.J., Bischoff, S., Mickel, S.J., McMaster, G., Angst, C., Bittiger, H., Froestl, W., Bettler, B. Nature (1997) [Pubmed]
  13. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Chittajallu, R., Vignes, M., Dev, K.K., Barnes, J.M., Collingridge, G.L., Henley, J.M. Nature (1996) [Pubmed]
  14. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Fairman, W.A., Vandenberg, R.J., Arriza, J.L., Kavanaugh, M.P., Amara, S.G. Nature (1995) [Pubmed]
  15. Cloning and expression of a rat brain L-glutamate transporter. Pines, G., Danbolt, N.C., Bjørås, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E., Kanner, B.I. Nature (1992) [Pubmed]
  16. Neurobiology of L-DOPAergic systems. Misu, Y., Goshima, Y., Ueda, H., Okamura, H. Prog. Neurobiol. (1996) [Pubmed]
  17. gamma-Aminobutyric acid concentration, L-glutamate 1-decarboxylase activity, and properties of the gamma-aminobutyric and postsynaptic receptor in cobalt epilepsy in the rat. Ross, S.M., Craig, C.R. J. Neurosci. (1981) [Pubmed]
  18. Interactions of a glutamate-aspartate binding protein with the glutamate transport system of Escherichia coli. Willis, R.C., Furlong, C.E. J. Biol. Chem. (1975) [Pubmed]
  19. The structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer Streptomyces parvulus. Use of 13C- and 15N-labeled L-glutamate and 13C and 15N NMR spectroscopy. Inbar, L., Lapidot, A. J. Biol. Chem. (1988) [Pubmed]
  20. A novel reaction catalyzed by unadenylylated glutamine synthetase from Escherichia coli. AMP-dependent synthesis of pyrophosphate and L-Glutamate from orthophosphate and L-glutamine. Whitley, E.J., Ginsburg, A. J. Biol. Chem. (1980) [Pubmed]
  21. Regulation of glutamate receptor binding by the cytoskeletal protein fodrin. Siman, R., Baudry, M., Lynch, G. Nature (1985) [Pubmed]
  22. Synaptosomes possess an exocytotic pool of glutamate. Nicholls, D.G., Sihra, T.S. Nature (1986) [Pubmed]
  23. Curare has a voltage-dependent blocking action on the glutamate synapse. Yamamoto, D., Washio, H. Nature (1979) [Pubmed]
  24. Disruption of cortical activity prevents ocular dominance changes in monocularly deprived kittens. Shaw, C., Cynader, M. Nature (1984) [Pubmed]
  25. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Wang, H.G., Pathan, N., Ethell, I.M., Krajewski, S., Yamaguchi, Y., Shibasaki, F., McKeon, F., Bobo, T., Franke, T.F., Reed, J.C. Science (1999) [Pubmed]
  26. Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I., Heinemann, S. Nature (1991) [Pubmed]
  27. L-glutamate has higher affinity than other amino acids for [3H]-D-AP5 binding sites in rat brain membranes. Olverman, H.J., Jones, A.W., Watkins, J.C. Nature (1984) [Pubmed]
  28. Dopamine enhances excitatory amino acid-gated conductances in cultured retinal horizontal cells. Knapp, A.G., Dowling, J.E. Nature (1987) [Pubmed]
  29. Patch-clamp detection of neurotransmitters in capillary electrophoresis. Orwar, O., Jardemark, K., Jacobson, I., Moscho, A., Fishman, H.A., Scheller, R.H., Zare, R.N. Science (1996) [Pubmed]
  30. Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Cull-Candy, S.G., Usowicz, M.M. Nature (1987) [Pubmed]
  31. Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Sommer, B., Keinänen, K., Verdoorn, T.A., Wisden, W., Burnashev, N., Herb, A., Köhler, M., Takagi, T., Sakmann, B., Seeburg, P.H. Science (1990) [Pubmed]
  32. Thyrotropin-releasing hormone selectively depresses glutamate excitation of cerebral cortical neurons. Renaud, L.P., Blume, H.W., Pittman, Q.J., Lamour, Y., Tan, A.T. Science (1979) [Pubmed]
  33. Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures. Smolders, I., Bortolotto, Z.A., Clarke, V.R., Warre, R., Khan, G.M., O'Neill, M.J., Ornstein, P.L., Bleakman, D., Ogden, A., Weiss, B., Stables, J.P., Ho, K.H., Ebinger, G., Collingridge, G.L., Lodge, D., Michotte, Y. Nat. Neurosci. (2002) [Pubmed]
  34. Molecular mimicry in Candida albicans. Role of an integrin analogue in adhesion of the yeast to human endothelium. Gustafson, K.S., Vercellotti, G.M., Bendel, C.M., Hostetter, M.K. J. Clin. Invest. (1991) [Pubmed]
  35. NMDA receptor channels: subunit-specific potentiation by reducing agents. Köhr, G., Eckardt, S., Lüddens, H., Monyer, H., Seeburg, P.H. Neuron (1994) [Pubmed]
  36. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. Arriza, J.L., Fairman, W.A., Wadiche, J.I., Murdoch, G.H., Kavanaugh, M.P., Amara, S.G. J. Neurosci. (1994) [Pubmed]
  37. Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. Smith, T.J., Peterson, P.E., Schmidt, T., Fang, J., Stanley, C.A. J. Mol. Biol. (2001) [Pubmed]
  38. Coexpression of postsynaptic density-95 protein with NMDA receptors results in enhanced receptor expression together with a decreased sensitivity to L-glutamate. Rutter, A.R., Stephenson, F.A. J. Neurochem. (2000) [Pubmed]
  39. Possible linkage between glutamate transporter and mitogen-activated protein kinase cascade in cultured rat cortical astrocytes. Abe, K., Saito, H. J. Neurochem. (2001) [Pubmed]
  40. Effect of denervation and local damage on extrajunctional L-glutamate receptors in locust muscle. Cull-Candy, S.G. Nature (1975) [Pubmed]
  41. A single packet of transmitter does not saturate postsynaptic glutamate receptors. Ishikawa, T., Sahara, Y., Takahashi, T. Neuron (2002) [Pubmed]
  42. Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. Gebhardt, R., Mecke, D. EMBO J. (1983) [Pubmed]
  43. An explanation for the purported excitation of piriform cortical neurons by N-acetyl-L-aspartyl-L-glutamic acid (NAAG). Whittemore, E.R., Koerner, J.F. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  44. The effect of amino acid L-glutamate on the extended preservation ex vivo of the heart for transplantation. Gharagozloo, F., Melendez, F.J., Hein, R.A., Laurence, R.G., Shemin, R.J., DiSesa, V.J., Cohn, L.H. Circulation (1987) [Pubmed]
WikiGenes - Universities