The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

GSS  -  glutathione synthetase

Homo sapiens

Synonyms: GSH synthetase, GSH-S, GSHS, Glutathione synthase, Glutathione synthetase, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of GSS

 

Psychiatry related information on GSS

  • This paper attempts to investigate empirically in 30 subjects some of the theoretical components related to individual differences that are thought by Gudjonsson & Clark (1986) to mediate interrogative suggestibility as measured by the Gudjonsson Suggestibility Scale (GSS; Gudjonsson, 1984a) [5].
  • Ophthalmological, psychometric and therapeutic investigation in two sisters with hereditary glutathione synthetase deficiency (5-oxoprolinuria) [6].
 

High impact information on GSS

 

Chemical compound and disease context of GSS

 

Biological context of GSS

 

Anatomical context of GSS

 

Associations of GSS with chemical compounds

  • Gamma-glutamylcysteine synthetase-glutathione synthetase: domain structure and identification of residues important in substrate and glutathione binding [1].
  • Glutathione synthetase deficiency: is gamma-glutamylcysteine accumulation a way to cope with oxidative stress in cells with insufficient levels of glutathione [17]?
  • Because 11,12-epoxyeicosatrienoic acid (11,12-EET) inhibits ENaC activity in the CCD (Wei Y, Lin DH, Kemp R, Yaddanapudi GSS, Nasjletti A, Falck JR, and Wang WH. J Gen Physiol 124: 719-727, 2004), we examined the role of 11,12-EET in mediating the effect of adenosine on ENaC [20].
  • Reciprocal crosses of homozygous, diploid females and hemizygous, haploid males of strains GSS (susceptible) and AKITA (resistant) revealed that resistance to pyridaben and fenpyroximate was inherited incompletely dominant with slight differences between maternal and paternal inheritance [21].
  • Extensive three-dimensional structural resemblances between biotin carboxylase and the ADP-forming peptide synthetases, represented by glutathione synthetase and D-Ala:D-Ala ligase, reveal a previously unsuspected evolutionary relationship between two major families of ADP-forming ligases [22].
 

Regulatory relationships of GSS

  • Overexpression of either Nrf1 or Nrf2 induced the GSS promoter activity by 130 and 168% respectively [14].
 

Other interactions of GSS

 

Analytical, diagnostic and therapeutic context of GSS

  • Cell-free extracts of cultured fibroblasts from 9 patients with GS deficiency and 9 control subjects were analysed by HPLC for low-molecular-weight thiol compounds [17].
  • Larvae of both strains, AKITA and UK-99, showed 1,100- and 480-fold resistance against pyridaben, 870- and 45-fold resistance against fenpyroximate, and 33- and 44-fold resistance against tebufenpyrad, respectively, in a foliar spray application bioassay compared with the susceptible strain GSS [21].
  • On the other hand, GSH-S transferase, highly purified by affinity chromatography, had no inhibitory activity [26].
  • Northern blot analysis with coding region probes revealed that in roots of Cd-exposed plants transcript amounts for OAS-TL and GSHS were only moderately increased, whereas gamma-ECS mRNA showed a stronger increase [27].
  • RESULTS: Significant decreases in GSH levels and gamma-GCS activity but not GSH-S were observed in ND, HD and CAPD patients compared with controls [28].

References

  1. Gamma-glutamylcysteine synthetase-glutathione synthetase: domain structure and identification of residues important in substrate and glutathione binding. Janowiak, B.E., Hayward, M.A., Peterson, F.C., Volkman, B.F., Griffith, O.W. Biochemistry (2006) [Pubmed]
  2. Mutations in the glutathione synthetase gene cause 5-oxoprolinuria. Shi, Z.Z., Habib, G.M., Rhead, W.J., Gahl, W.A., He, X., Sazer, S., Lieberman, M.W. Nat. Genet. (1996) [Pubmed]
  3. Missense mutations in the human glutathione synthetase gene result in severe metabolic acidosis, 5-oxoprolinuria, hemolytic anemia and neurological dysfunction. Dahl, N., Pigg, M., Ristoff, E., Gali, R., Carlsson, B., Mannervik, B., Larsson, A., Board, P. Hum. Mol. Genet. (1997) [Pubmed]
  4. Oxidative damage to neutrophils in glutathione synthetase deficiency. Spielberg, S.P., Boxer, L.A., Oliver, J.M., Allen, J.M., Schulman, J.D. Br. J. Haematol. (1979) [Pubmed]
  5. Interrogative suggestibility: its relationship with assertiveness, social-evaluative anxiety, state anxiety and method of coping. Gudjonsson, G.H. The British journal of clinical psychology / the British Psychological Society. (1988) [Pubmed]
  6. Ophthalmological, psychometric and therapeutic investigation in two sisters with hereditary glutathione synthetase deficiency (5-oxoprolinuria). Larsson, A., Wachtmeister, L., von Wendt, L., Andersson, R., Hagenfeldt, L., Herrin, K.M. Neuropediatrics. (1985) [Pubmed]
  7. Protection of granulocytes by vitamin E in glutathione synthetase deficiency. Boxer, L.A., Oliver, J.M., Spielberg, S.P., Allen, J.M., Schulman, J.D. N. Engl. J. Med. (1979) [Pubmed]
  8. Glutathione synthetase-deficient lymphocytes and acetaminophen toxicity. Spielberg, S.P., Gordon, G.B. Clin. Pharmacol. Ther. (1981) [Pubmed]
  9. A Medicago truncatula homoglutathione synthetase is derived from glutathione synthetase by gene duplication. Frendo, P., Jiménez, M.J., Mathieu, C., Duret, L., Gallesi, D., Van de Sype, G., Hérouart, D., Puppo, A. Plant Physiol. (2001) [Pubmed]
  10. Activity loss of glutathione synthesis enzymes associated with human subcapsular cataract. Rathbun, W.B., Schmidt, A.J., Holleschau, A.M. Invest. Ophthalmol. Vis. Sci. (1993) [Pubmed]
  11. Effect of ascorbate or N-acetylcysteine treatment in a patient with hereditary glutathione synthetase deficiency. Jain, A., Buist, N.R., Kennaway, N.G., Powell, B.R., Auld, P.A., Mårtensson, J. J. Pediatr. (1994) [Pubmed]
  12. CD95/CD95 ligand-independent potentiation of treosulfan cytotoxicity by BSO in malignant glioma cells in vitro and in vivo. Wick, W., Stock, J., Seyfried, J., Baumgart, J., Wüllner, U., Weller, M. Int. J. Oncol. (2002) [Pubmed]
  13. The gene encoding human glutathione synthetase (GSS) maps to the long arm of chromosome 20 at band 11.2. Webb, G.C., Vaska, V.L., Gali, R.R., Ford, J.H., Board, P.G. Genomics (1995) [Pubmed]
  14. Cloning and characterization of the human glutathione synthetase 5'-flanking region. Lee, T.D., Yang, H., Whang, J., Lu, S.C. Biochem. J. (2005) [Pubmed]
  15. Function of conserved residues of human glutathione synthetase: implications for the ATP-grasp enzymes. Dinescu, A., Cundari, T.R., Bhansali, V.S., Luo, J.L., Anderson, M.E. J. Biol. Chem. (2004) [Pubmed]
  16. Sequencing and expression of a cDNA for human glutathione synthetase. Gali, R.R., Board, P.G. Biochem. J. (1995) [Pubmed]
  17. Glutathione synthetase deficiency: is gamma-glutamylcysteine accumulation a way to cope with oxidative stress in cells with insufficient levels of glutathione? Ristoff, E., Hebert, C., Njålsson, R., Norgren, S., Rooyackers, O., Larsson, A. J. Inherit. Metab. Dis. (2002) [Pubmed]
  18. Biosynthesis of 1-methyladenine by isolated segments of starfish ovaries. Tarr, H.L. Gen. Comp. Endocrinol. (1985) [Pubmed]
  19. Exuberant cellular reaction of the optic nerves in experimental Creutzfeldt-Jakob disease. Liberski, P.P., Sikorska, B., Bratosiewicz-Wasik, J., Waliś, A., Brown, P., Brown, D. Acta neurobiologiae experimentalis. (2003) [Pubmed]
  20. Adenosine inhibits ENaC via cytochrome P-450 epoxygenase-dependent metabolites of arachidonic acid. Wei, Y., Sun, P., Wang, Z., Yang, B., Carroll, M.A., Wang, W.H. Am. J. Physiol. Renal Physiol. (2006) [Pubmed]
  21. Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). Stumpf, N., Nauen, R. J. Econ. Entomol. (2001) [Pubmed]
  22. Biotin carboxylase comes into the fold. Artymiuk, P.J., Poirrette, A.R., Rice, D.W., Willett, P. Nat. Struct. Biol. (1996) [Pubmed]
  23. No acute impact of lipid apheresis treatment on free radical scavenging enzyme gene expression in white blood cells. Schettler, V., Krontal, J., Scheel, A., Wieland, E. Eur. J. Clin. Invest. (2003) [Pubmed]
  24. Improved erythrocyte survival with high-dose vitamin E in chronic hemolyzing G6PD and glutathione synthetase deficiencies. Spielberg, S.P., Boxer, L.A., Corash, L.M., Schulman, J.D. Ann. Intern. Med. (1979) [Pubmed]
  25. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Rahman, I., MacNee, W. Free Radic. Biol. Med. (2000) [Pubmed]
  26. Glutathione-dependent protection against oxidative damage of the human red cell membrane. Fujii, S., Dale, G.L., Beutler, E. Blood (1984) [Pubmed]
  27. cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial gamma-glutamylcysteine synthetase isoform. Schäfer, H.J., Haag-Kerwer, A., Rausch, T. Plant Mol. Biol. (1998) [Pubmed]
  28. Impairment of glutathione biosynthetic pathway in uraemia and dialysis. Alhamdani, M.S. Nephrol. Dial. Transplant. (2005) [Pubmed]
 
WikiGenes - Universities