The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Leucomycins     2-[ (2R,4E,6E,8R,9R,11R,12S,13S,14 R)-12...

Synonyms: Syneptine, Turimycin, Ayermicina, kitasamycin, Kitasamycine, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of kitasamycin

 

High impact information on kitasamycin

  • Semisynthetic preparation of leucomycin derivatives: introduction of aromatic side chains by reductive amination [6].
  • A small library of leucomycin A7 derivatives was prepared by NaCNBH3/ZnCl2-mediated reductive amination of the C18 aldehyde moiety with a variety of lipophilic benzylamines and tested for antibiotic activity [6].
  • Biosynthesis of kitasamycin (leucomycin) by leucine analog-resistant mutants of Streptomyces kitasatoensis [7].
  • In general, the binding of the leucomycins and the leucomycin derivatives to ribosomes correlated with their antimicrobial activity [2].
  • 13C-labeled antibiotics leucomycin and tylosin, have been obtained from the culture broth of Streptomyces kitasatoensis 66-14-3 and Streptomyces fradiae C-373, respectively in the presence of appropriate 13C-labeled precursors, and 13C NMR spectra of the antibiotics thus obtained have been measured [8].
 

Chemical compound and disease context of kitasamycin

  • Inorganic phosphate inhibited the biosynthesis of the macrolide antibiotic turimycin in different strains of Streptomyces hygroscopicus [9].
  • Cerulenin, an inhibitor of fatty acid synthesis, specifically inhibits the biosynthesis of leucomycin, a 16-membered macrolide antibiotic, in both growing cells and resting cells of Streptomyces kitasatoensis [10].
  • Three novel glycosides of platenolides I and II containing either mycarose (2,6-dideoxy-3-C-methyl-L-ribohexopyranose) or 3-demethyl-mycarose (2,6-dideoxy-L-ribohexopyranose) were isolated as the shunt products of turimycin biosynthesis by an industrial strain of Streptomyces hygroscopicus IMET JA 6599 [11].
  • RESULTS: The MIC of YH-6 for Ureaplasma urealyticum (Uu: 250 micrograms.L-1), Mycoplasma hominis (Mh: 500 micrograms.L-1), M orale (Mo: 125 micrograms.L-1) and M salivarium (Ms: 125 micrograms.L-1) were closely similar to those of macrolides (erythromycin and leucomycin) and were 2-8 folds greater than those of ofloxacin (Ofl) [12].
  • In Mycobacterium avium complex strains, which were not exposed previously to any antituberculosis drugs, resistances to rifampin, minocycline, and kitasamycin, and resistances to streptomycin and kanamycin appeared frequently in the same strains [13].
 

Biological context of kitasamycin

 

Anatomical context of kitasamycin

 

Associations of kitasamycin with other chemical compounds

 

Gene context of kitasamycin

 

Analytical, diagnostic and therapeutic context of kitasamycin

References

  1. Stimulation of leucomycin production by magnesium phosphate and its relevance to nitrogen catabolite regulation. Omura, S., Tanaka, Y., Kitao, C., Tanaka, H., Iwai, Y. Antimicrob. Agents Chemother. (1980) [Pubmed]
  2. Structure-activity relationships among the O-acyl derivatives of leucomycin. Correlation of minimal inhibitory concentrations with binding to Escherichia coli ribosomes. Omura, S., Nakagawa, A., Sakakibara, H., Okekawa, O., Brandsch, R. J. Med. Chem. (1977) [Pubmed]
  3. In vitro antibiotic susceptibility of field isolates of Mycoplasma synoviae in Argentina. Cerdá, R.O., Giacoboni, G.I., Xavier, J.A., Sansalone, P.L., Landoni, M.F. Avian Dis. (2002) [Pubmed]
  4. Pharmacokinetics and tissue residues of kitasamycin in healthy and diseased broilers. Hassan, A.B., Atta, A.H., Soliman, Z.I. DTW. Dtsch. Tierarztl. Wochenschr. (1990) [Pubmed]
  5. Toxicological studies on the new veterinary antibiotic turimycin. Härtl, A., Hoffmann, H. Polish journal of pharmacology and pharmacy. (1980) [Pubmed]
  6. Semisynthetic preparation of leucomycin derivatives: introduction of aromatic side chains by reductive amination. Gebhardt, P., Gräfe, U., Möllmann, U., Hertweck, C. Mol. Divers. (2005) [Pubmed]
  7. Biosynthesis of kitasamycin (leucomycin) by leucine analog-resistant mutants of Streptomyces kitasatoensis. Vézina, C., Bolduc, C., Kudelski, A., Audet, P. Antimicrob. Agents Chemother. (1979) [Pubmed]
  8. Studies on the biosynthesis of 16-membered macrolide antibiotics using carbon-13 nuclear magnetic resonance spectroscopy. Omura, S., Takeshima, H., Nakagawa, A., Miyazawa, J., Piriou, F., Lukacs, G. Biochemistry (1977) [Pubmed]
  9. Phosphate inhibition of secondary metabolism in Streptomyces hygroscopicus and its reversal by cyclic AMP. Gersch, D., Skurk, A., Römer, W. Arch. Microbiol. (1979) [Pubmed]
  10. Inhibition of the biosynthesis of leucomycin, a macrolide antibiotic, by cerulenin. Takeshima, H., Kitao, C., Omura, S. J. Biochem. (1977) [Pubmed]
  11. Isolation and structures of nitrogen-free platenolide glycosides. II. The 5-O-(alpha-mycarosyl)- and 5-O-(3'-demethyl-beta-mycaroxyl)-platenolides I and II. Gräfe, U., Schade, W., Ihn, W., Reinhardt, G., Dornberger, K., Thrum, H., Radics, L. J. Antibiot. (1980) [Pubmed]
  12. Antimycoplasmal activities of (S)-(-)-9-fluoro-2,3-dihydro-3-methyl-10 -[4-(2-pyridyl)-1-piperazinyl]-7-oxo-7H-pyrido[1,2,3-de][1,4]benzoxazine -6-carboxylic acid (YH-6) in comparison with other antibiotics in vitro. Ye, H., Wu, J.M., Yang, Y.S., Ji, R.Y., Chen, K.X. Zhongguo yao li xue bao = Acta pharmacologica Sinica. (1999) [Pubmed]
  13. Correlations among naturally occurring resistances to antituberculosis drugs in Mycobacterium avium complex strains. Tsukamura, M., Miyachi, T. Am. Rev. Respir. Dis. (1989) [Pubmed]
  14. Plasmid loss and changes within the chromosomal DNA of Streptomyces reticuli. Schrempf, H. J. Bacteriol. (1982) [Pubmed]
  15. Synthesis and biological evaluation of novel leucomycin analogues modified at the C-3 position. I. Epimerization and methylation of the 3-hydroxyl group. Furuuchi, T., Kurihara, K., Yoshida, T., Ajito, K. J. Antibiot. (2003) [Pubmed]
  16. Quantitative structure-activity relationships of O-acyl derivatives of leucomycin for antimicrobial and ribosome-binding activities. Tanaka, H., Moriguchi, I., Hirono, S., Omura, S. Chem. Pharm. Bull. (1985) [Pubmed]
  17. Comparative study on effects of 14- and 16-membered macrolides on gastrointestinal motility in unanaesthetized dogs. Nakayoshi, T., Izumi, M., Shinkai, S., Fujita, M. Drugs under experimental and clinical research. (1988) [Pubmed]
  18. An in-vitro study on the metabolism of rokitamycin and possible interactions of the drug with rat liver microsomes. Zhao, X.J., Ishizaki, T. J. Pharm. Pharmacol. (1999) [Pubmed]
  19. Pharmacokinetic characteristics of the new veterinary antibiotic turimycin. Hoffmann, H., Härtl, A. Polish journal of pharmacology and pharmacy. (1980) [Pubmed]
  20. Adhesive binding of rokitamycin to Staphylococcus aureus ribosomes. Endou, K., Matsuoka, M., Nakajima, Y. FEMS Microbiol. Lett. (1990) [Pubmed]
  21. Studies on the quantification of local tissue injury following intramuscular injection of aqueous solutions. VIII. The local lesion after application of turimycin in different preparations. Löw, O., Lemke, H., Reich, G., Machnik, G. Experimentelle Pathologie. (1979) [Pubmed]
 
WikiGenes - Universities