The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Phosphates     phosphate

Synonyms: O-Phosphate, phosphate(3-), Phosphate ions, AG-D-84461, CHEBI:18367, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of orthophosphate


High impact information on orthophosphate

  • On several proteins, O-GlcNAc and O-phosphate alternatively occupy the same or adjacent sites, leading to the hypothesis that one function of this saccharide is to transiently block phosphorylation [6].
  • Inorganic phosphate homeostasis. Renal adaptation to the dietary intake in intact and thyroparathyroidectomized rats [7].
  • Inorganic phosphate, a competitive inhibitor, protects the enzymes from inactivation, suggesting that the action of NO is directed to the active sites [8].
  • The interaction between ribBP and the 95-kDa receptor and/or VTG requires Ca2+ and PO4(3-) [9].
  • Inorganic phosphate did not affect actin filament velocity in the presence of 1 mM MgATP, but competitively inhibited movement in the presence of 50 microM MgATP with a Ki = 9.5 mM [10].

Chemical compound and disease context of orthophosphate


Biological context of orthophosphate


Anatomical context of orthophosphate


Associations of orthophosphate with other chemical compounds

  • The reaction is catalyzed by hydroxide ion, Tris free base, and HPO4 2-, with catalytic constants of 0.032 min-1 (pH 8.0), 0.052, and 0.115 M-1 min-1, respectively [26].
  • The PhIAT labeling approach involves hydroxide ion-mediated beta-elimination of the O-phosphate moiety and the addition of 1,2-ethanedithiol containing either four alkyl hydrogens (EDT-D0) or four alkyl deuteriums (EDT-D4) followed by biotinylation of the EDT-D0/D4 moiety using (+)-biotinyl-iodoacetamidyl-3,6-dioxaoctanediamine [27].
  • The salivary secretion of both glands was assessed for flow rate, amylase, lysozyme, and salivary peroxidase activity and for concentrations of total protein, hexosamine, sialic acid, Ca2+, Cl-, K+, Mg2+, Na+, and PO4(3-) [28].
  • Measurements of specific surface, as well as Ca/P ratio, infrared, X-ray, and calcination data are all consistent with the idea that citrate ion substitutes for PO4(3-) ion on the apatitic surface [29].
  • Phosphorylation of tyrosine residues in proteins is a common regulatory mechanism, although it accounts for less than 1% of the total O-phosphate content in proteins [30].

Gene context of orthophosphate


Analytical, diagnostic and therapeutic context of orthophosphate

  • Inorganic phosphate, as determined by simultaneous 31P-NMR, remained elevated during early reperfusion relative to baseline, and significantly correlated with the extent of decline in [13C]glycogen during reperfusion (r = 0.79, P less than 0.01) [36].
  • Inorganic phosphate (Pi) increased in the control group from 6.8 +/- 0.5 to 11.4 +/- 1.2 mmol (p less than 0.005) and in the advanced heart failure group from 10.4 +/- 1.1 to 15.3 +/- 1.2 mmol (p less than 0.01) [37].
  • Thiourea-based hydrogen-bond forming ionophore 2, alpha,alpha'-bis(N'-p-nitrophenylthioureylene)-m-xylene, is synthesized and investigated by using ion transfer polarography for the facilitated transfers of H2PO4-, HPO42- and Cl- across the nitrobenzene-water interface [38].
  • Phosphorylated membrane substrates were analyzed: high voltage paper electrophoresis after partial hydrolysis indicated that [32-P]phosphate is incorporated into serine and threonine residues as o-phosphate derivatives [39].
  • Hypophysectomy of the fed eel resulted in a significant reduction, not only in PO4(3-) absorption, but also in absorption of water and other electrolytes [40].


  1. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Van Mooy, B.A., Rocap, G., Fredricks, H.F., Evans, C.T., Devol, A.H. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  2. Parathyroid hormone after adenectomy for primary hyperparathyroidism. A study of peptide hormone elimination kinetics in humans. Maier, G.W., Kreis, M.E., Renn, W., Pereira, P.L., Häring, H.U., Becker, H.D. J. Clin. Endocrinol. Metab. (1998) [Pubmed]
  3. Expression of Escherichia coli homoserine kinase in mouse 3T3 cells. Rees, W.D., Hay, S.M., Flint, H.J. Biochem. J. (1992) [Pubmed]
  4. Binding of ATP by pertussis toxin and isolated toxin subunits. Hausman, S.Z., Manclark, C.R., Burns, D.L. Biochemistry (1990) [Pubmed]
  5. Inorganic phosphate induces spore morphogenesis and enterotoxin production in the intestinal pathogen Clostridium perfringens. Philippe, V.A., Méndez, M.B., Huang, I.H., Orsaria, L.M., Sarker, M.R., Grau, R.R. Infect. Immun. (2006) [Pubmed]
  6. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Wells, L., Vosseller, K., Hart, G.W. Science (2001) [Pubmed]
  7. Inorganic phosphate homeostasis. Renal adaptation to the dietary intake in intact and thyroparathyroidectomized rats. Tröhler, U., Bonjour, J.P., Fleisch, H. J. Clin. Invest. (1976) [Pubmed]
  8. Nitric oxide causes inactivation of the low molecular weight phosphotyrosine protein phosphatase. Caselli, A., Camici, G., Manao, G., Moneti, G., Pazzagli, L., Cappugi, G., Ramponi, G. J. Biol. Chem. (1994) [Pubmed]
  9. Avian riboflavin binding protein binds to lipoprotein receptors in association with vitellogenin. Mac Lachlan, I., Nimpf, J., Schneider, W.J. J. Biol. Chem. (1994) [Pubmed]
  10. Effects of MgATP, MgADP, and Pi on actin movement by smooth muscle myosin. Warshaw, D.M., Desrosiers, J.M., Work, S.S., Trybus, K.M. J. Biol. Chem. (1991) [Pubmed]
  11. Inorganic phosphate inhibits growth of human osteosarcoma U2OS cells via adenylate cyclase/cAMP pathway. Naviglio, S., Spina, A., Chiosi, E., Fusco, A., Illiano, F., Pagano, M., Romano, M., Senatore, G., Sorrentino, A., Sorvillo, L., Illiano, G. J. Cell. Biochem. (2006) [Pubmed]
  12. Inhibition of NO3-, NH4+, and PO4(3-) uptake in Anabaena doliolum exposed to a petroleum oil. Singh, A.K., Gaur, J.P. Ecotoxicol. Environ. Saf. (1991) [Pubmed]
  13. Protective effect of creatinol O-phosphate (COP) on some experimental arrhythmias in vitro and in vivo. Ferrini, R., Miragoli, G. Arzneimittel-Forschung. (1979) [Pubmed]
  14. Antiarrhythmic effectiveness of creatinol O-phosphate in man. Cadel, A., Palumbo, A., Zerilli, G., Pria, R., Fanciulli, R., Conversano, S., Galbiati, R. Arzneimittel-Forschung. (1979) [Pubmed]
  15. Synthesis and chemical properties of N- and O-phosphorylated derivatives of creatinol. Ferrari, G., Casagrande, C. Arzneimittel-Forschung. (1979) [Pubmed]
  16. Evidence for two catalytic sites on 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase. Dynamics of substrate exchange and phosphoryl enzyme formation. Pilkis, S.J., Regen, D.M., Stewart, H.B., Pilkis, J., Pate, T.M., El-Maghrabi, M.R. J. Biol. Chem. (1984) [Pubmed]
  17. Pigeon liver amidophosphoribosyltransferase. Ligand-induced alterations in molecular and kinetic properties. Itoh, R., Holmes, E.W., Wyngaarden, J.B. J. Biol. Chem. (1976) [Pubmed]
  18. "Phosphatonins" and the regulation of phosphorus homeostasis. Berndt, T.J., Schiavi, S., Kumar, R. Am. J. Physiol. Renal Physiol. (2005) [Pubmed]
  19. Inorganic Pi increases neuronal survival in the acute early phase following excitotoxic/oxidative insults. Glinn, M., Ni, B., Irwin, R.P., Kelley, S.W., Lin, S.Z., Paul, S.M. J. Neurochem. (1998) [Pubmed]
  20. Actomyosin energy turnover declines while force remains constant during isometric muscle contraction. West, T.G., Curtin, N.A., Ferenczi, M.A., He, Z.H., Sun, Y.B., Irving, M., Woledge, R.C. J. Physiol. (Lond.) (2004) [Pubmed]
  21. Active phosphate ion transport in plasma membrane vesicles isolated from mouse fibroblasts. Lever, J.E. J. Biol. Chem. (1978) [Pubmed]
  22. Glucagon-stimulated phosphorylation of rat liver glycogen synthase in isolated hepatocytes. Akatsuka, A., Singh, T.J., Nakabayashi, H., Lin, M.C., Huang, K.P. J. Biol. Chem. (1985) [Pubmed]
  23. Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP-2-induced matrix mineralization in osteoblast-like cells. Suzuki, A., Ghayor, C., Guicheux, J., Magne, D., Quillard, S., Kakita, A., Ono, Y., Miura, Y., Oiso, Y., Itoh, M., Caverzasio, J. J. Bone Miner. Res. (2006) [Pubmed]
  24. Properties of electrogenic Pi transport by a human renal brush border Na+/Pi transporter. Busch, A.E., Wagner, C.A., Schuster, A., Waldegger, S., Biber, J., Murer, H., Lang, F. J. Am. Soc. Nephrol. (1995) [Pubmed]
  25. Inorganic phosphate regulates multiple genes during osteoblast differentiation, including Nrf2. Beck, G.R., Moran, E., Knecht, N. Exp. Cell Res. (2003) [Pubmed]
  26. Base-catalyzed hydrolysis of 4-hydroperoxycyclophosphamide: evidence for iminocyclophosphamide as an intermediate. Borch, R.F., Getman, K.M. J. Med. Chem. (1984) [Pubmed]
  27. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Goshe, M.B., Conrads, T.P., Panisko, E.A., Angell, N.H., Veenstra, T.D., Smith, R.D. Anal. Chem. (2001) [Pubmed]
  28. Effects of the beta-adrenoceptor antagonists atenolol and propranolol on human parotid and submandibular-sublingual salivary secretion. Nederfors, T., Ericsson, T., Twetman, S., Dahlöf, C. J. Dent. Res. (1994) [Pubmed]
  29. Is there a "citrate-apatite" in biological calcified systems? Cifuentes, I., González-Díaz, P.F., Cifuentes-Delatte, L. Calcif. Tissue Int. (1980) [Pubmed]
  30. Studies on the dephosphorylation of phosphotyrosine-containing peptides during post-source decay in matrix-assisted laser desorption/ionization. Metzger, S., Hoffmann, R. Journal of mass spectrometry : JMS. (2000) [Pubmed]
  31. Activation of yeast 6-phosphofructo-2-kinase by protein kinase and phosphate. Yamashoji, S., Hess, B. FEBS Lett. (1984) [Pubmed]
  32. Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta. Cheng, X., Cole, R.N., Zaia, J., Hart, G.W. Biochemistry (2000) [Pubmed]
  33. Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport. Ba, J., Brown, D., Friedman, P.A. Am. J. Physiol. Renal Physiol. (2003) [Pubmed]
  34. Stabilization of a native protein mediated by ligand binding inhibits amyloid formation independently of the aggregation pathway. Soldi, G., Plakoutsi, G., Taddei, N., Chiti, F. J. Med. Chem. (2006) [Pubmed]
  35. Inorganic phosphate regulates the binding of cofilin to actin filaments. Muhlrad, A., Pavlov, D., Peyser, Y.M., Reisler, E. FEBS J. (2006) [Pubmed]
  36. Regulation of myocardial glycogenolysis during post-ischemic reperfusion. Kalil-Filho, R., Gerstenblith, G., Hansford, R.G., Chacko, V.P., Vandegaer, K., Weiss, R.G. J. Mol. Cell. Cardiol. (1991) [Pubmed]
  37. The effect of dobutamine on myocardial performance and high-energy phosphate metabolism at different stages of heart failure in cardiomyopathic hamsters: a 31P MRS study. Buser, P.T., Camacho, S.A., Wu, S.T., Higgins, C.B., Jasmin, G., Parmley, W.W., Wikman-Coffelt, J. Am. Heart J. (1989) [Pubmed]
  38. Hydrogen-bond forming ionophore for highly efficient transport of phosphate anions across the nitrobenzene-water interface. Nishizawa, S., Yokobori, T., Kato, R., Yoshimoto, K., Kamaishi, T., Teramae, N. The Analyst. (2003) [Pubmed]
  39. Phosphorylation of purified thyroid plasma membranes incubated with [32-P]ATP. Roques, M., Tirard, A., Lissitzky, S., Rapaud, J. Mol. Cell. Endocrinol. (1975) [Pubmed]
  40. Effect of hypophysectomy on absorption of inorganic phosphate by the eel intestine. Nakamura, Y., Hirano, T. Comparative biochemistry and physiology. A, Comparative physiology. (1986) [Pubmed]
WikiGenes - Universities