The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AC1NUGKW     3-[(2Z)-2-[(E)-4-(1,3- dibutyl-4,6-dioxo-2...

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of NSC369286


Psychiatry related information on NSC369286

  • Taken together, these data suggest that temperature-dependent cellular defense mechanisms are significant determinants of a cell's susceptibility to MC540-mediated PDT [5].

High impact information on NSC369286


Chemical compound and disease context of NSC369286


Biological context of NSC369286


Anatomical context of NSC369286


Associations of NSC369286 with other chemical compounds


Gene context of NSC369286

  • The parameters studied are cellular procoagulant activity, secretion of plasminogen activator inhibitor (PAI-1) and urokinase-type plasminogen activator (u-PA), activation and internalization of factor X and Merocyanine 540 staining [27].
  • In human peripheral blood lymphocytes (PBL) and mouse thymocytes we incorporated light scatter properties, cell cycle stage, relevant cell surface immunophenotypic markers (CD25 or CD4) and CD8) and a marker of plasma membrane integrity (merocyanine 540) to enable multiparametric phenotyping of apoptotic cells [28].
  • Moreover, fluorescence signals from 2 anionic potential-sensitive dyes, merocyanine 540 and a bis-oxonol, were identical in P388 and P388/ADR [29].
  • We recently showed that two photoproducts of merocyanine 540, C2 and C5, triggered cytochrome C release; however, C5 was inefficient in inducing caspase activity and apoptosis in leukemia cells, unlike C2 [30].
  • The finding that competitive inhibitors of transglutaminase significantly inhibited C-PAF release, enhancement of MC540 staining, and externalization of phosphatidylserine, strongly suggest a role for this enzyme in the enhancement of phospholipid transbilayer movement [31].

Analytical, diagnostic and therapeutic context of NSC369286


  1. Binding of merocyanine 540 to normal and leukemic erythroid cells. Schlegel, R.A., Phelps, B.M., Waggoner, A., Terada, L., Williamson, P. Cell (1980) [Pubmed]
  2. Selective killing of leukemic cells by merocyanine 540-mediated photosensitization. Sieber, F., Spivak, J.L., Sutcliffe, A.M. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  3. Enhanced thrombin generation and platelet binding on herpes simplex virus-infected endothelium. Visser, M.R., Tracy, P.B., Vercellotti, G.M., Goodman, J.L., White, J.G., Jacob, H.S. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  4. Dye-mediated photolysis of human neuroblastoma cells: implications for autologous bone marrow transplantation. Sieber, F., Rao, S., Rowley, S.D., Sieber-Blum, M. Blood (1986) [Pubmed]
  5. Role of cytoprotective mechanisms in the photochemical purging of autologous bone marrow grafts. Yamazaki, T., Sato, Y., Sieber, F. Exp. Hematol. (1997) [Pubmed]
  6. Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane. Williamson, P., Bateman, J., Kozarsky, K., Mattocks, K., Hermanowicz, N., Choe, H.R., Schlegel, R.A. Cell (1982) [Pubmed]
  7. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Salama, G., Morad, M. Science (1976) [Pubmed]
  8. Photosensitizing effects of the tricyclic heteroaromatic cationic dyes pyronin Y and toluidine blue O (tolonium chloride). Darzynkiewicz, Z., Carter, S.P. Cancer Res. (1988) [Pubmed]
  9. Analysis of viral DNA, protein and envelope damage after methylene blue, phthalocyanine derivative or merocyanine 540 photosensitization. Abe, H., Wagner, S.J. Photochem. Photobiol. (1995) [Pubmed]
  10. Production of singlet oxygen-derived hydroxyl radical adducts during merocyanine-540-mediated photosensitization: analysis by ESR-spin trapping and HPLC with electrochemical detection. Feix, J.B., Kalyanaraman, B. Arch. Biochem. Biophys. (1991) [Pubmed]
  11. Verteporfin, photofrin II, and merocyanine 540 as PDT photosensitizers against melanoma cells. Nowak-Sliwinska, P., Karocki, A., Elas, M., Pawlak, A., Stochel, G., Urbanska, K. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  12. Modulation by thiols of the merocyanine 540-sensitized photolysis of leukemia cells, red cells, and herpes simplex virus type 1. Gaffney, D.K., O'Brien, J.M., Sieber, F. Photochem. Photobiol. (1991) [Pubmed]
  13. Relation between the organization of spectrin and of membrane lipids in lymphocytes. Del Buono, B.J., Williamson, P.L., Schlegel, R.A. J. Cell Biol. (1988) [Pubmed]
  14. Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages. McEvoy, L., Williamson, P., Schlegel, R.A. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  15. Purified photoproducts of merocyanine 540 trigger cytochrome C release and caspase 8-dependent apoptosis in human leukemia and melanoma cells. Pervaiz, S., Seyed, M.A., Hirpara, J.L., Clément, M.V., Loh, K.W. Blood (1999) [Pubmed]
  16. Bleaching of membrane-bound merocyanine 540 in conjunction with free radical-mediated lipid peroxidation. Pintar, T.J., Lin, F., Girotti, A.W. Free Radic. Biol. Med. (1994) [Pubmed]
  17. Lipid peroxidation in photodynamically stressed mammalian cells: use of cholesterol hydroperoxides as mechanistic reporters. Geiger, P.G., Korytowski, W., Lin, F., Girotti, A.W. Free Radic. Biol. Med. (1997) [Pubmed]
  18. Merocyanine 540 as a fluorescent probe of membranes: staining of electrically excitable cells. Easton, T.G., Valinsky, J.E., Reich, E. Cell (1978) [Pubmed]
  19. The immunoregulatory effects of merocyanine 540 on in vitro human T- and B-lymphocyte functions. Lum, L.G., Yamagami, M., Giddings, B.R., Joshi, I., Schober, S.L., Sensenbrenner, L.L., Sieber, F. Blood (1991) [Pubmed]
  20. Bulk phase proton fluxes during the generation of membrane potential in rat liver mitochondria. McKenzie, R.J., Azzone, G.F., Conover, T.E. J. Biol. Chem. (1991) [Pubmed]
  21. Optical probe responses on sarcoplasmic reticulum. Merocyanine and oxonol dyes. Russell, J.T., Beeler, T., Martonosi, A. J. Biol. Chem. (1979) [Pubmed]
  22. Tumor-promoting phorbol esters support the in vitro proliferation of murine pluripotent hematopoietic stem cells. Spivak, J.L., Hogans, B.B., Stuart, R.K. J. Clin. Invest. (1989) [Pubmed]
  23. Hydrodynamic hyperpolarization of endothelial cells. Nakache, M., Gaub, H.E. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  24. Comparison of the cytotoxic effects of merocyanine-540 on leukemic cells and normal human bone marrow. Atzpodien, J., Gulati, S.C., Clarkson, B.D. Cancer Res. (1986) [Pubmed]
  25. Enhancement of merocyanine 540-mediated phototherapy by salicylate. Anderson, M.S., Kalyanaraman, B., Feix, J.B. Cancer Res. (1993) [Pubmed]
  26. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Huang, S.M., Bock, J.M., Harari, P.M. Cancer Res. (1999) [Pubmed]
  27. The procoagulant response of cytomegalovirus infected endothelial cells. van Dam-Mieras, M.C., Muller, A.D., van Hinsbergh, V.W., Mullers, W.J., Bomans, P.H., Bruggeman, C.A. Thromb. Haemost. (1992) [Pubmed]
  28. Flow cytometric ratio analysis of the Hoechst 33342 emission spectrum: multiparametric characterization of apoptotic lymphocytes. Chiu, L., Cherwinski, H., Ransom, J., Dunne, J.F. J. Immunol. Methods (1996) [Pubmed]
  29. Characterization of multidrug resistance by fluorescent dyes. Kessel, D., Beck, W.T., Kukuruga, D., Schulz, V. Cancer Res. (1991) [Pubmed]
  30. Intracellular acidification triggered by mitochondrial-derived hydrogen peroxide is an effector mechanism for drug-induced apoptosis in tumor cells. Hirpara, J.L., Clément, M.V., Pervaiz, S. J. Biol. Chem. (2001) [Pubmed]
  31. Release of platelet activation factor from activated neutrophils. Transglutaminase-dependent enhancement of transbilayer movement across the plasma membrane. Bratton, D.L. J. Biol. Chem. (1993) [Pubmed]
  32. Selenoperoxidase-mediated cytoprotection against merocyanine 540-sensitized photoperoxidation and photokilling of leukemia cells. Lin, F., Geiger, P.G., Girotti, A.W. Cancer Res. (1992) [Pubmed]
  33. Zeaxanthin in combination with ascorbic acid or alpha-tocopherol protects ARPE-19 cells against photosensitized peroxidation of lipids. Wrona, M., Rózanowska, M., Sarna, T. Free Radic. Biol. Med. (2004) [Pubmed]
  34. Indirect fluorescence of aliphatic carboxylic acids in nonaqueous capillary electrophoresis using merocyanine 540. Chiu, T.C., Huang, M.F., Huang, C.C., Hsieh, M.M., Chang, H.T. Electrophoresis (2002) [Pubmed]
  35. Perturbations of membrane structure by optical probes: II. Differential scanning calorimetry of dipalmitoyllecithin and its analogs interacting with Merocyanine 540. Lelkes, P.I., Bach, D., Miller, I.R. J. Membr. Biol. (1980) [Pubmed]
  36. Photoperoxidation of cholesterol in homogeneous solution, isolated membranes, and cells: comparison of the 5 alpha- and 6 beta-hydroperoxides as indicators of singlet oxygen intermediacy. Korytowski, W., Bachowski, G.J., Girotti, A.W. Photochem. Photobiol. (1992) [Pubmed]
WikiGenes - Universities