The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Pindac     3-cyano-2-(3,3-dimethylbutan- 2-yl)-1...

Synonyms: Pinacidilum, Prestwick_396, CHEMBL1159, Pindac (TN), P154_SIGMA, ...
This record was replaced with 4826.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Pinacidil anhydrous

 

Psychiatry related information on Pinacidil anhydrous

  • Diazoxide and pinacidil, two ATP-sensitive K(+) channel openers, injected by intraplantar route, induced a long-lasting increment of pain threshold of the animals and produced antinociception in both models of hyperalgesia [6].
  • The potential of ATP-sensitive potassium channel openers (KCOs) for the treatment of male erectile dysfunction has recently been suggested based on positive clinical outcomes following intra-cavernosal administration of pinacidil [7].
  • After two weeks of treatment with 17-beta-estradiol, pinacidil failed to significantly decrease heart rate in males however, tamoxifen-pretreated female group responded by decrease in automatism in the presence of rising concentration of pinacidil (Emax=-45+/-6 bpm, not significantly different from Emax in male control=-40+/-5 bpm, n=7) [8].
 

High impact information on Pinacidil anhydrous

  • The K(+) channel opener pinacidil did not induce K(+) currents in vascular smooth-muscle cells of Kir6.1-null mice, and there was no vasodilation response to pinacidil [9].
  • Glibenclamide, a K(ATP) channel inhibitor, and DL-propargylglycine, a CSE inhibitor, exacerbated, whereas pinacidil, a K(ATP) opener, attenuated gastric injury caused by ASA [10].
  • Cotransfection with Kir6.2/SUR2A genes, which encode cardiac KATP channel subunits, resulted in a cellular phenotype that, in the presence of pinacidil (10 micromol/L), expressed K+ current and gained resistance to hypoxia-reoxygenation (Ca2+ concentration from 99+/-7 to 127+/-11 nmol/L; P>0.05) [11].
  • In COS-7 cells transfected with individual channel subunits Kir6.2 or SUR2A, which alone do not form functional cardiac KATP channels, pinacidil did not protect against hypoxia-reoxygenation [11].
  • Myocardial oxygen consumption in the rabbit heart after ischemia: hyperpolarized arrest with pinacidil versus depolarized hyperkalemic arrest [12].
 

Chemical compound and disease context of Pinacidil anhydrous

 

Biological context of Pinacidil anhydrous

 

Anatomical context of Pinacidil anhydrous

 

Associations of Pinacidil anhydrous with other chemical compounds

 

Gene context of Pinacidil anhydrous

  • Cyanoguanidines such as pinacidil and P1075 bind to SUR and enhance MgATP binding to and hydrolysis by SUR, thereby opening K(ATP) channels [24].
  • Although pinacidil is a nonselective activator of expressed sK(ATP) channels, diazoxide did not open channels formed by Kir6.1/SUR2A, Kir6.2/SUR2A (known components of cardiac sK(ATP) channels) or Kir6.2/SUR2B [25].
  • Incubation of pinacidil with CYP3A4 in the presence of (18)O(2) or H(2)(18)O showed that the amide carbonyl oxygen derived exclusively from molecular oxygen [26].
  • SUR2 subtype (A and B)-dependent differential activation of the cloned ATP-sensitive K+ channels by pinacidil and nicorandil [27].
  • These results suggest NNC 55-9216 is a SUR1-selective PCO that requires structural determinants, which differ from those needed for activation of the K(ATP) channel by pinacidil and cromakalim [28].
 

Analytical, diagnostic and therapeutic context of Pinacidil anhydrous

References

  1. Cloning and functional expression of a rat heart KATP channel. Ashford, M.L., Bond, C.T., Blair, T.A., Adelman, J.P. Nature (1994) [Pubmed]
  2. Unanticipated lessening of the rise in extracellular potassium during ischemia by pinacidil. Kanda, A., Watanabe, I., Williams, M.L., Engle, C.L., Li, S., Koch, G.G., Gettes, L.S. Circulation (1997) [Pubmed]
  3. Endogenous adenosine does not activate ATP-sensitive potassium channels in the hypoxic guinea pig ventricle in vivo. Xu, J., Wang, L., Hurt, C.M., Pelleg, A. Circulation (1994) [Pubmed]
  4. Suppression of repolarization-related arrhythmias in vitro and in vivo by low-dose potassium channel activators. Fish, F.A., Prakash, C., Roden, D.M. Circulation (1990) [Pubmed]
  5. Phorbol-12,13-dibutyrate and pinacidil cardioplegia. Novel forms of myoprotection. Kirvaitis, R.J., Krukenkamp, I.B., Gaudette, G.R., Miyatake, T., Levitsky, S. Circulation (1996) [Pubmed]
  6. Activation of peripheral ATP-sensitive K+ channels mediates the antinociceptive effect of Crotalus durissus terrificus snake venom. Picolo, G., Cassola, A.C., Cury, Y. Eur. J. Pharmacol. (2003) [Pubmed]
  7. Dual mechanism of action of nicorandil on rabbit corpus cavernosal smooth muscle tone. Hsieh, G.C., Kolasa, T., Sullivan, J.P., Brioni, J.D. Int. J. Impot. Res. (2001) [Pubmed]
  8. Selective inhibition of pinacidil effects by estrogen in guinea pig heart. Kocić, I., Gruchała, M., Petrusewicz, J. International journal of cardiology. (2006) [Pubmed]
  9. Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1. Miki, T., Suzuki, M., Shibasaki, T., Uemura, H., Sato, T., Yamaguchi, K., Koseki, H., Iwanaga, T., Nakaya, H., Seino, S. Nat. Med. (2002) [Pubmed]
  10. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Fiorucci, S., Antonelli, E., Distrutti, E., Rizzo, G., Mencarelli, A., Orlandi, S., Zanardo, R., Renga, B., Di Sante, M., Morelli, A., Cirino, G., Wallace, J.L. Gastroenterology (2005) [Pubmed]
  11. Recombinant cardiac ATP-sensitive K+ channel subunits confer resistance to chemical hypoxia-reoxygenation injury. Jovanović, A., Jovanović, S., Lorenz, E., Terzic, A. Circulation (1998) [Pubmed]
  12. Myocardial oxygen consumption in the rabbit heart after ischemia: hyperpolarized arrest with pinacidil versus depolarized hyperkalemic arrest. Lawton, J.S., Hsia, P.W., McClain, L.C., Maier, G.W., Damiano, R.J. Circulation (1997) [Pubmed]
  13. Hyperpolarized cardioplegic arrest with nicorandil: advantages over other potassium channel openers. Jayawant, A.M., Lawton, J.S., Hsia, P.W., Damiano, R.J. Circulation (1997) [Pubmed]
  14. Comparative effects of nitroprusside and pinacidil on myocardial blood flow and infarct size in awake dogs with acute myocardial infarction. Imai, N., Liang, C.S., Stone, C.K., Sakamoto, S., Hood, W.B. Circulation (1988) [Pubmed]
  15. Protein kinase C and G(i/o) proteins are involved in adenosine- and ischemic preconditioning-mediated renal protection. Lee, H.T., Emala, C.W. J. Am. Soc. Nephrol. (2001) [Pubmed]
  16. Acute hemodynamic effects of pinacidil and hydralazine in essential hypertension. Carlsen, J.E., Kardel, T., Lund, J.O., McNair, A., Trap-Jensen, J. Clin. Pharmacol. Ther. (1985) [Pubmed]
  17. Systemic and coronary hemodynamic effects of pinacidil in awake normotensive and hypertensive dogs. Kawashima, S., Liang, C.S. Hypertension (1985) [Pubmed]
  18. Pinacidil-induced electrical heterogeneity and extrasystolic activity in canine ventricular tissues. Does activation of ATP-regulated potassium current promote phase 2 reentry? Di Diego, J.M., Antzelevitch, C. Circulation (1993) [Pubmed]
  19. Hormone-regulated K+ channels in follicle-enclosed oocytes are activated by vasorelaxing K+ channel openers and blocked by antidiabetic sulfonylureas. Honoré, E., Lazdunski, M. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  20. K+ channel openers activate brain sulfonylurea-sensitive K+ channels and block neurosecretion. Schmid-Antomarchi, H., Amoroso, S., Fosset, M., Lazdunski, M. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  21. Increased myogenic tone and diminished responsiveness to ATP-sensitive K+ channel openers in cerebral arteries from diabetic rats. Zimmermann, P.A., Knot, H.J., Stevenson, A.S., Nelson, M.T. Circ. Res. (1997) [Pubmed]
  22. Divergent mechanisms of ATP-sensitive K+ channel-induced vasodilation in renal afferent and efferent arterioles. Evidence of L-type Ca2+ channel-dependent and -independent actions of pinacidil. Reslerova, M., Loutzenhiser, R. Circ. Res. (1995) [Pubmed]
  23. A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. Isomoto, S., Kondo, C., Yamada, M., Matsumoto, S., Higashiguchi, O., Horio, Y., Matsuzawa, Y., Kurachi, Y. J. Biol. Chem. (1996) [Pubmed]
  24. The stereoenantiomers of a pinacidil analog open or close cloned ATP-sensitive K+ channels. Lange, U., Löffler-Walz, C., Englert, H.C., Hambrock, A., Russ, U., Quast, U. J. Biol. Chem. (2002) [Pubmed]
  25. Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Liu, Y., Ren, G., O'Rourke, B., Marbán, E., Seharaseyon, J. Mol. Pharmacol. (2001) [Pubmed]
  26. Cytochrome P450 3A4-mediated oxidative conversion of a cyano to an amide group in the metabolism of pinacidil. Zhang, Z., Li, Y., Stearns, R.A., Ortiz De Montellano, P.R., Baillie, T.A., Tang, W. Biochemistry (2002) [Pubmed]
  27. SUR2 subtype (A and B)-dependent differential activation of the cloned ATP-sensitive K+ channels by pinacidil and nicorandil. Shindo, T., Yamada, M., Isomoto, S., Horio, Y., Kurachi, Y. Br. J. Pharmacol. (1998) [Pubmed]
  28. The novel diazoxide analog 3-isopropylamino-7-methoxy-4H-1,2,4-benzothiadiazine 1,1-dioxide is a selective Kir6.2/SUR1 channel opener. Dabrowski, M., Ashcroft, F.M., Ashfield, R., Lebrun, P., Pirotte, B., Egebjerg, J., Bondo Hansen, J., Wahl, P. Diabetes (2002) [Pubmed]
  29. Mechanosensitive gating of atrial ATP-sensitive potassium channels. Van Wagoner, D.R. Circ. Res. (1993) [Pubmed]
  30. Effect of adenosine triphosphate-sensitive potassium channel openers on lung preservation. Fukuse, T., Hirata, T., Omasa, M., Wada, H. Am. J. Respir. Crit. Care Med. (2002) [Pubmed]
  31. Effect of cirrhosis and debrisoquin phenotype on the disposition and effects of pinacidil. Shaheen, O., Patel, J., Avant, G.R., Hamilton, M., Wood, A.J. Clin. Pharmacol. Ther. (1986) [Pubmed]
 
WikiGenes - Universities