The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Azol     4-aminophenol

Synonyms: Certinal, Energol, Paranol, Rodinal, Citol, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Azol


High impact information on Azol


Chemical compound and disease context of Azol


Biological context of Azol


Anatomical context of Azol


Associations of Azol with other chemical compounds


Gene context of Azol

  • A secondary DNA probe labeled with alkaline phosphatase (AP) was then hybridized to base sequence 1039-1062 on the target. p-Aminophenol, which is enzymatically generated by the immobilized AP from p-aminophenyl phosphate (PAPP), is detected using electrochemistry [29].
  • Heterogeneous enzyme immunoassay of alpha-fetoprotein in maternal serum by flow-injection amperometric detection of 4-aminophenol [30].
  • The enzyme label beta-GAL converted the substrate 4-aminophenyl-beta-D-galactopyranoside (4-APG) into 4-aminophenol (4-AP), which subsequently was detected by a cellobiose dehydrogenase (CDH) modified solid graphite electrode [31].
  • Electrochemical Immunosensor Using p-Aminophenol Redox Cycling by Hydrazine Combined with a Low Background Current [25].
  • In contrast to the reduction in CDDP, Hg2+ and Cd2+ toxicity, the reduction in p-aminophenol toxicity cannot be explained by the metal-binding properties of MT [4].

Analytical, diagnostic and therapeutic context of Azol

  • Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay [32].
  • A small-volume voltammetric detection of 4-aminophenol (PAP) has been developed using an interdigitated array (IDA) microelectrode cell in order to apply the IDA to electrochemical enzyme immunoassay [32].
  • The immunoassay sandwich was made by attaching a biotinylated rabbit anti-MS2 IgG to a streptavidin-coated bead, capturing the virus, and then attaching a rabbit anti-MS2 IgG-beta-galactosidase conjugate to another site on the virus. beta-Galactosidase converts p-aminophenyl galactopyranoside (PAPG) to p-aminophenol (PAP) [33].
  • No free p-aminophenol could be detected in the perfusion medium and only a small amount in the bile [34].
  • The bioelectrocatalytic properties of this biosensor offer an additional amplification and thus allow a very sensitive quantification of 4-aminophenol, generated by the beta-galactosidase [35].


  1. Mechanism of p-nitrosophenol reduction catalyzed by horse liver and human pi-alcohol dehydrogenase (ADH). Human pi-ADH as a quinone reductase. Maskos, Z., Winston, G.W. J. Biol. Chem. (1994) [Pubmed]
  2. Contribution of aniline metabolites to aniline-induced methemoglobinemia. Harrison, J.H., Jollow, D.J. Mol. Pharmacol. (1987) [Pubmed]
  3. Urine discoloration after acetaminophen overdose. Clark, P.M., Clark, J.D., Wheatley, T. Clin. Chem. (1986) [Pubmed]
  4. The role of metallothionein in the reduction of cisplatin-induced nephrotoxicity by Bi3(+)-pretreatment in the rat in vivo and in vitro. Are antioxidant properties of metallothionein more relevant than platinum binding? Boogaard, P.J., Slikkerveer, A., Nagelkerke, J.F., Mulder, G.J. Biochem. Pharmacol. (1991) [Pubmed]
  5. The metabolic pathway of 4-aminophenol in Burkholderia sp. strain AK-5 differs from that of aniline and aniline with C-4 substituents. Takenaka, S., Okugawa, S., Kadowaki, M., Murakami, S., Aoki, K. Appl. Environ. Microbiol. (2003) [Pubmed]
  6. Accleration of autooxidation of human oxyhemoglobin by aniline and its relation to hemoglobin-catalyzed aniline hydroxylation. Mieyal, J.J., Blumer, J.L. J. Biol. Chem. (1976) [Pubmed]
  7. Characterization of Enzyme-like activity of human hemoglobin. Properties of the hemoglobin-P-450 reductase-coupled aniline hydroxylase system. Mieyal, J.J., Ackerman, R.S., Blumer, J.L., Freeman, L.S. J. Biol. Chem. (1976) [Pubmed]
  8. Genotoxic activities of aniline and its metabolites and their relationship to the carcinogenicity of aniline in the spleen of rats. Bomhard, E.M., Herbold, B.A. Crit. Rev. Toxicol. (2005) [Pubmed]
  9. Substrate-dependent regulation of human arylamine N-acetyltransferase-1 in cultured cells. Butcher, N.J., Ilett, K.F., Minchin, R.F. Mol. Pharmacol. (2000) [Pubmed]
  10. Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM. Cheng, T.L., Wu, P.Y., Wu, M.F., Chern, J.W., Roffler, S.R. Bioconjug. Chem. (1999) [Pubmed]
  11. Pyruvate reduces 4-aminophenol in vitro toxicity. Harmon, R.C., Kiningham, K.K., Valentovic, M.A. Toxicol. Appl. Pharmacol. (2006) [Pubmed]
  12. 2-Aminophenol and 4-aminophenol toxicity in renal slices from Sprague-Dawley and Fischer 344 rats. Valentovic, M.A., Ball, J.G. J. Toxicol. Environ. Health Part A (1998) [Pubmed]
  13. Isolation and characterization of a pseudomonas strain that degrades 4-acetamidophenol and 4-aminophenol. Ahmed, S., Javed, M.A., Tanvir, S., Hameed, A. Biodegradation (2001) [Pubmed]
  14. Spatially addressed deposition and imaging of biochemically active bead microstructures by scanning electrochemical microscopy. Wijayawardhana, C.A., Wittstock, G., Halsall, H.B., Heineman, W.R. Anal. Chem. (2000) [Pubmed]
  15. Small-volume detection of Plasmodium falciparum CSP gene using a 50-microm-diameter cavity with self-contained electrochemistry. Aguilar, Z.P. Anal. Chem. (2006) [Pubmed]
  16. Imaging of immobilized antibody layers with scanning electrochemical microscopy. Wittstock, G., Yu, K.J., Halsall, H.B., Ridgway, T.H., Heineman, W.R. Anal. Chem. (1995) [Pubmed]
  17. The effect of varying halogen substituent patterns on the cytochrome P450 catalysed dehalogenation of 4-halogenated anilines to 4-aminophenol metabolites. Cnubben, N.H., Vervoort, J., Boersma, M.G., Rietjens, I.M. Biochem. Pharmacol. (1995) [Pubmed]
  18. Acetaminophen nephrotoxicity: studies on renal acetylation and deacetylation. Carpenter, H.M., Mudge, G.H. J. Pharmacol. Exp. Ther. (1981) [Pubmed]
  19. Acetaminophen is an inhibitor of hepatic N-acetyltransferase 2 in vitro and in vivo. Rothen, J.P., Haefeli, W.E., Meyer, U.A., Todesco, L., Wenk, M. Pharmacogenetics (1998) [Pubmed]
  20. Accumulation of phenols and catechols in isolated mouse hepatocytes in starvation or after pretreatment with acetone. Bánhegyi, G., Garzó, T., Antoni, F., Mandl, J. Biochem. Pharmacol. (1988) [Pubmed]
  21. Depletion of mitochondrial coenzyme A and glutathione by 4-dimethylaminophenol and formation of mixed thioethers. Eckert, K.G., Elbers, F.R., Eyer, P. Biochem. Pharmacol. (1989) [Pubmed]
  22. Disposition of amodiaquine and related antimalarial agents in human neutrophils: implications for drug design. Naisbitt, D.J., Ruscoe, J.E., Williams, D., O'Neill, P.M., Pirmohamed, M., Park, B.K. J. Pharmacol. Exp. Ther. (1997) [Pubmed]
  23. Acetaminophen nephrotoxicity in the rat. Renal metabolic activation in vitro. Newton, J.F., Bailie, M.B., Hook, J.B. Toxicol. Appl. Pharmacol. (1983) [Pubmed]
  24. Oxidation of p-aminophenol catalyzed by horseradish peroxidase and prostaglandin synthase. Josephy, P.D., Eling, T.E., Mason, R.P. Mol. Pharmacol. (1983) [Pubmed]
  25. Electrochemical Immunosensor Using p-Aminophenol Redox Cycling by Hydrazine Combined with a Low Background Current. Das, J., Jo, K., Lee, J.W., Yang, H. Anal. Chem. (2007) [Pubmed]
  26. Competitive heterogeneous enzyme immunoassay for theophylline by flow-injection analysis with electrochemical detection of p-aminophenol. Gil, E.P., Tang, H.T., Halsall, H.B., Heineman, W.R., Misiego, A.S. Clin. Chem. (1990) [Pubmed]
  27. Metabolism-dependent neutrophil cytotoxicity of amodiaquine: A comparison with pyronaridine and related antimalarial drugs. Naisbitt, D.J., Williams, D.P., O'Neill, P.M., Maggs, J.L., Willock, D.J., Pirmohamed, M., Park, B.K. Chem. Res. Toxicol. (1998) [Pubmed]
  28. Ferrihemoglobin formation by monohydroxy aniline derivatives in erythrocytes of some avian species in comparison with mammals. Blaauboer, B.J., van Holsteijn, C.W., van Holsteijn, C.W., Wit, J.G., Wit, J.G. Naunyn Schmiedebergs Arch. Pharmacol. (1976) [Pubmed]
  29. Immobilized enzyme-linked DNA-hybridization assay with electrochemical detection for Cryptosporidium parvum hsp70 mRNA. Aguilar, Z.P., Fritsch, I. Anal. Chem. (2003) [Pubmed]
  30. Heterogeneous enzyme immunoassay of alpha-fetoprotein in maternal serum by flow-injection amperometric detection of 4-aminophenol. Xu, Y., Halsall, B., Heineman, W.R. Clin. Chem. (1990) [Pubmed]
  31. An enzyme flow immunoassay that uses beta-galactosidase as the label and a cellobiose dehydrogenase biosensor as the label detector. Burestedt, E., Nistor, C., Schagerlöf, U., Emnéus, J. Anal. Chem. (2000) [Pubmed]
  32. Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay. Niwa, O., Xu, Y., Halsall, H.B., Heineman, W.R. Anal. Chem. (1993) [Pubmed]
  33. Bead-based electrochemical immunoassay for bacteriophage MS2. Thomas, J.H., Kim, S.K., Hesketh, P.J., Halsall, H.B., Heineman, W.R. Anal. Chem. (2004) [Pubmed]
  34. The metabolism and disposition of aniline in the isolated blood-perfused liver of the rat. Boobis, A.R., Powis, G. Drug Metab. Dispos. (1975) [Pubmed]
  35. GDH biosensor based off-line capillary immunoassay for alkylphenols and their ethoxylates. Rose, A., Nistor, C., Emnéus, J., Pfeiffer, D., Wollenberger, U. Biosensors & bioelectronics. (2002) [Pubmed]
WikiGenes - Universities