The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Sp7  -  Sp7 transcription factor 7

Mus musculus

Synonyms: 6430578P22Rik, C22, Osx, Transcription factor Sp7, Zinc finger protein osterix, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Sp7

  • Taken together, these results suggested that T-614 possessed anabolic effects on bone metabolism, besides suppressor of bone resorption, by increased expression of osterix [1].
  • One of the proteins is the C22 component of alkyl hydroperoxide reductase, which is induced by hydrogen peroxide in Salmonella typhimurium [2].
  • Expression of the Aop1 gene product in E. coli deficient in the C22-subunit gene rescued resistance of the bacteria to alkylhydroperoxide [3].
  • The activity of the C22 compound was not due to toxicity, since transformation occurred in carcinogen-treated cultures after its removal; neither was it due to antiproliferative effects on transformed cells, since the C22 compound did not prevent focus formation by transformed cells in reconstruction experiments [4].

High impact information on Sp7


Biological context of Sp7


Anatomical context of Sp7


Associations of Sp7 with chemical compounds

  • NFAT and Osterix form a complex that binds to DNA, and this interaction is important for the transcriptional activity of Osterix [7].
  • The BMP enhancement of the osterix gene expression in chondrocytes was blocked in the presence of a protein synthesis inhibitor, cycloheximide, while it was still observed in the presence of 5,6-dichloro-1-beta D-ribofuranosylbenzimidazol (DRB) suggesting the involvement of post-transcriptional events, which require new protein synthesis [9].
  • In this study, we have used a murine preosteoblast cell line MC3T3-E1 cells to demonstrate that DMSO effectively induces osteoblastic differentiation of MC3T3-E1 cells via the activation of Runx2 and osterix and is dependent upon the protein kinase C (PKC) pathways [15].
  • We further analyzed the effects of continuous activation of Wnt signaling by lithium chloride and observed that osteoblast differentiation was reduced, as measured by expression of osteoblast marker genes encoding alkaline phosphatase, osteocalcin, and osterix, as well as by the amount of calcium release [16].
  • We identified the transactivation domain of Osterix, which contains high proline and glycine residues and has an activation property in mammalian and yeast cells [17].

Regulatory relationships of Sp7


Other interactions of Sp7


Analytical, diagnostic and therapeutic context of Sp7


  1. A novel anti-rheumatic drug, T-614, stimulates osteoblastic differentiation in vitro and bone morphogenetic protein-2-induced bone formation in vivo. Kuriyama, K., Higuchi, C., Tanaka, K., Yoshikawa, H., Itoh, K. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  2. Cloning and characterization of a 23-kDa stress-induced mouse peritoneal macrophage protein. Ishii, T., Yamada, M., Sato, H., Matsue, M., Taketani, S., Nakayama, K., Sugita, Y., Bannai, S. J. Biol. Chem. (1993) [Pubmed]
  3. Mammalian antioxidant protein complements alkylhydroperoxide reductase (ahpC) mutation in Escherichia coli. Tsuji, K., Copeland, N.G., Jenkins, N.A., Obinata, M. Biochem. J. (1995) [Pubmed]
  4. A synthetic C22 carotenoid inhibits carcinogen-induced neoplastic transformation and enhances gap junctional communication. Pung, A., Franke, A., Zhang, L.X., Ippendorf, H., Martin, H.D., Sies, H., Bertram, J.S. Carcinogenesis (1993) [Pubmed]
  5. TSH is a negative regulator of skeletal remodeling. Abe, E., Marians, R.C., Yu, W., Wu, X.B., Ando, T., Li, Y., Iqbal, J., Eldeiry, L., Rajendren, G., Blair, H.C., Davies, T.F., Zaidi, M. Cell (2003) [Pubmed]
  6. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J.M., Behringer, R.R., de Crombrugghe, B. Cell (2002) [Pubmed]
  7. NFAT and Osterix cooperatively regulate bone formation. Koga, T., Matsui, Y., Asagiri, M., Kodama, T., de Crombrugghe, B., Nakashima, K., Takayanagi, H. Nat. Med. (2005) [Pubmed]
  8. The nucleocytoplasmic shuttling protein CIZ reduces adult bone mass by inhibiting bone morphogenetic protein-induced bone formation. Morinobu, M., Nakamoto, T., Hino, K., Tsuji, K., Shen, Z.J., Nakashima, K., Nifuji, A., Yamamoto, H., Hirai, H., Noda, M. J. Exp. Med. (2005) [Pubmed]
  9. Bone morphogenetic protein-2 enhances osterix gene expression in chondrocytes. Yagi, K., Tsuji, K., Nifuji, A., Shinomiya, K., Nakashima, K., DeCrombrugghe, B., Noda, M. J. Cell. Biochem. (2003) [Pubmed]
  10. Differentiation of osteoblasts from murine embryonic stem cells by overexpression of the transcriptional factor osterix. Tai, G., Polak, J.M., Bishop, A.E., Christodoulou, I., Buttery, L.D. Tissue engineering. (2004) [Pubmed]
  11. Transcriptional mechanisms in osteoblast differentiation and bone formation. Nakashima, K., de Crombrugghe, B. Trends Genet. (2003) [Pubmed]
  12. Transcriptional regulation of the Osterix (Osx, Sp7) promoter by tumor necrosis factor identifies disparate effects of mitogen-activated protein kinase and NFkappaB pathways. Lu, X., Gilbert, L., He, X., Rubin, J., Nanes, M.S. J. Biol. Chem. (2006) [Pubmed]
  13. Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Nishio, Y., Dong, Y., Paris, M., O'keefe, R.J., Schwarz, E.M., Drissi, H. Gene (2006) [Pubmed]
  14. Osterix enhances proliferation and osteogenic potential of bone marrow stromal cells. Tu, Q., Valverde, P., Chen, J. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  15. Dimethyl sulfoxide as an inducer of differentiation in preosteoblast MC3T3-E1 cells. Cheung, W.M., Ng, W.W., Kung, A.W. FEBS Lett. (2006) [Pubmed]
  16. Microarray analysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts. Vaes, B.L., Dechering, K.J., van Someren, E.P., Hendriks, J.M., van de Ven, C.J., Feijen, A., Mummery, C.L., Reinders, M.J., Olijve, W., van Zoelen, E.J., Steegenga, W.T. Bone (2005) [Pubmed]
  17. Molecular characterization of the zinc finger transcription factor, Osterix. Hatta, M., Yoshimura, Y., Deyama, Y., Fukamizu, A., Suzuki, K. Int. J. Mol. Med. (2006) [Pubmed]
  18. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Akiyama Ddagger, H., Kim Ddagger, J.E., Nakashima, K., Balmes, G., Iwai, N., Deng, J.M., Zhang, Z., Martin, J.F., Behringer, R.R., Nakamura, T., de Crombrugghe, B. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  19. p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. Wang, X., Kua, H.Y., Hu, Y., Guo, K., Zeng, Q., Wu, Q., Ng, H.H., Karsenty, G., de Crombrugghe, B., Yeh, J., Li, B. J. Cell Biol. (2006) [Pubmed]
  20. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. Matsubara, T., Kida, K., Yamaguchi, A., Hata, K., Ichida, F., Meguro, H., Aburatani, H., Nishimura, R., Yoneda, T. J. Biol. Chem. (2008) [Pubmed]
  21. BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. Ulsamer, A., Ortuño, M.J., Ruiz, S., Susperregui, A.R., Osses, N., Rosa, J.L., Ventura, F. J. Biol. Chem. (2008) [Pubmed]
  22. MyoD enhances BMP7-induced osteogenic differentiation of myogenic cell cultures. Komaki, M., Asakura, A., Rudnicki, M.A., Sodek, J., Cheifetz, S. J. Cell. Sci. (2004) [Pubmed]
  23. Spaciotemporal association and bone morphogenetic protein regulation of sclerostin and osterix expression during embryonic osteogenesis. Ohyama, Y., Nifuji, A., Maeda, Y., Amagasa, T., Noda, M. Endocrinology (2004) [Pubmed]
  24. The tyrosine phosphatase, OST-PTP, is expressed in mesenchymal progenitor cells early during skeletogenesis in the mouse. Yunker, L.A., Undersander, A., Lian, J.B., Stein, G.S., Carlson, C.S., Mauro, L.J. J. Cell. Biochem. (2004) [Pubmed]
  25. An in situ hybridization study of Runx2, Osterix, and Sox9 at the onset of condylar cartilage formation in fetal mouse mandible. Shibata, S., Suda, N., Suzuki, S., Fukuoka, H., Yamashita, Y. J. Anat. (2006) [Pubmed]
  26. Platelet-rich plasma/osteoblasts complex induces bone formation via osteoblastic differentiation following subcutaneous transplantation. Goto, H., Matsuyama, T., Miyamoto, M., Yonamine, Y., Izumi, Y. J. Periodont. Res. (2006) [Pubmed]
  27. Methylation of the Mouse DIx5 and Osx Gene Promoters Regulates Cell Type-specific Gene Expression. Lee, J.Y., Lee, Y.M., Kim, M.J., Choi, J.Y., Park, E.K., Kim, S.Y., Lee, S.P., Yang, J.S., Kim, D.S. Mol. Cells (2006) [Pubmed]
WikiGenes - Universities