The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Rcvrn  -  recoverin

Mus musculus

Synonyms: 23 kDa photoreceptor cell-specific protein, CAR, Cancer-associated retinopathy protein, Protein CAR, Rcv1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Rcvrn

  • It is not present in neurons postsynaptic to rods, yet we found that light-evoked responses of rod bipolar and ganglion cells were shortened when measured in recoverin-deficient retinas [1].
  • This cell culture system will be useful for investigating environments and factors which participate in the expression of the recoverin gene, and may identify regulatory features of the recoverin gene which cause it to be illicitly expressed in small-cell lung carcinomas in cancer-associated retinopathy (CAR) [2].
  • CONCLUSIONS: Inhibition of the CTLA4 pathway is essential for the development of recoverin-induced murine CAR, suggesting that strengthening negative T cell signaling through CTLA4 may lessen the retinal degenerations in CAR-affected subjects [3].
 

High impact information on Rcvrn

 

Biological context of Rcvrn

 

Anatomical context of Rcvrn

 

Associations of Rcvrn with chemical compounds

 

Other interactions of Rcvrn

References

  1. Recoverin improves rod-mediated vision by enhancing signal transmission in the mouse retina. Sampath, A.P., Strissel, K.J., Elias, R., Arshavsky, V.Y., McGinnis, J.F., Chen, J., Kawamura, S., Rieke, F., Hurley, J.B. Neuron (2005) [Pubmed]
  2. Unique retina cell phenotypes revealed by immunological analysis of recoverin expression in rat retina cells. McGinnis, J.F., Stepanik, P.L., Chen, W., Elias, R., Cao, W., Lerious, V. J. Neurosci. Res. (1999) [Pubmed]
  3. Effects of cytotoxic T lymphocyte antigen 4 (CTLA4) signaling and locally applied steroid on retinal dysfunction by recoverin, cancer-associated retinopathy antigen. Maeda, A., Maeda, T., Liang, Y., Yenerel, M., Saperstein, D.A. Mol. Vis. (2006) [Pubmed]
  4. Control of late off-center cone bipolar cell differentiation and visual signaling by the homeobox gene Vsx1. Chow, R.L., Volgyi, B., Szilard, R.K., Ng, D., McKerlie, C., Bloomfield, S.A., Birch, D.G., McInnes, R.R. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  5. Recoverin undergoes light-dependent intracellular translocation in rod photoreceptors. Strissel, K.J., Lishko, P.V., Trieu, L.H., Kennedy, M.J., Hurley, J.B., Arshavsky, V.Y. J. Biol. Chem. (2005) [Pubmed]
  6. Recoverin regulates light-dependent phosphodiesterase activity in retinal rods. Makino, C.L., Dodd, R.L., Chen, J., Burns, M.E., Roca, A., Simon, M.I., Baylor, D.A. J. Gen. Physiol. (2004) [Pubmed]
  7. Rhodopsin phosphorylation and its role in photoreceptor function. Hurley, J.B., Spencer, M., Niemi, G.A. Vision Res. (1998) [Pubmed]
  8. Evaluation of the contributions of recoverin and GCAPs to rod photoreceptor light adaptation and recovery to the dark state. Hurley, J.B., Chen, J. Prog. Brain Res. (2001) [Pubmed]
  9. Development of the outer retina in the mouse. Sharma, R.K., O'Leary, T.E., Fields, C.M., Johnson, D.A. Brain Res. Dev. Brain Res. (2003) [Pubmed]
  10. Calcium-binding protein distribution in the retina of strepsirhine and haplorhine primates. Chiquet, C., Dkhissi-Benyahya, O., Cooper, H.M. Brain Res. Bull. (2005) [Pubmed]
  11. Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Klassen, H.J., Ng, T.F., Kurimoto, Y., Kirov, I., Shatos, M., Coffey, P., Young, M.J. Invest. Ophthalmol. Vis. Sci. (2004) [Pubmed]
  12. Photoreceptor proteins as cancer-retina antigens. Bazhin, A.V., Schadendorf, D., Willner, N., De Smet, C., Heinzelmann, A., Tikhomirova, N.K., Umansky, V., Philippov, P.P., Eichmüller, S.B. Int. J. Cancer (2007) [Pubmed]
  13. Development of cholinergic amacrine cells is visual activity-dependent in the postnatal mouse retina. Zhang, J., Yang, Z., Wu, S.M. J. Comp. Neurol. (2005) [Pubmed]
  14. cGMP accumulation and gene expression of soluble guanylate cyclase in human vascular tissue. Papapetropoulos, A., Cziraki, A., Rubin, J.W., Stone, C.D., Catravas, J.D. J. Cell. Physiol. (1996) [Pubmed]
  15. Identification of recoverin-like immunoreactivity in mouse brain. Takamatsu, K., Uyemura, K. Brain Res. (1992) [Pubmed]
  16. Expression of ocular autoantigens in the mouse thymus. Charukamnoetkanok, P., Fukushima, A., Whitcup, S.M., Gery, I., Egwuagu, C.E. Curr. Eye Res. (1998) [Pubmed]
  17. High yield of cells committed to the photoreceptor fate from expanded mouse retinal stem cells. Merhi-Soussi, F., Angénieux, B., Canola, K., Kostic, C., Tekaya, M., Hornfeld, D., Arsenijevic, Y. Stem Cells (2006) [Pubmed]
  18. Proapoptotic bcl-2 family members, Bax and Bak, are essential for developmental photoreceptor apoptosis. Hahn, P., Lindsten, T., Ying, G.S., Bennett, J., Milam, A.H., Thompson, C.B., Dunaief, J.L. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
 
WikiGenes - Universities