The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Prph2  -  peripherin 2

Mus musculus

Synonyms: AOFMD, AVMD, Nmf193, PRPH, Peripherin-2, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Prph2


High impact information on Prph2


Chemical compound and disease context of Prph2


Biological context of Prph2

  • Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice [13].
  • Although mutations in the rhodopsin, peripherin, and cGMP phosphodiesterase genes have been identified in some forms of RP, it remains to be determined whether these mutations lead to photoreceptor cell death through necrotic or apoptotic mechanisms [14].
  • Here, we generated transgenic/knockout mice that duplicate the amino acid substitutions and predicted levels of rds and rom1 in patients with RDS-mediated digenic and dominant RP [15].
  • We report here that the amino acid sequence of the bovine photoreceptor-cell protein peripherin, which was previously localized to the rim region of the photoreceptor disk membrane, is 92.5% identical to the sequence of the mouse protein encoded by the normal rds gene [2].
  • Functional, structural and biochemical analyses showed that, while R172W P/rds is appropriately localized, a direct correlation exists between transgene expression levels and the onset/severity of the phenotype [16].

Anatomical context of Prph2

  • Monoclonal antibodies were used with Western blot analysis to localize the wild-type mouse peripherin/rds protein to isolated mouse rod outer segments and to show that it, like bovine peripherin, exists as two subunits linked by one or more disulfide bonds [2].
  • Improvement of neuronal visual responses in the superior colliculus in Prph2(Rd2/Rd2) mice following gene therapy [17].
  • In developing rds mice, rom-1 accumulated primarily in distal ciliary membranes [18].
  • In a COS-1 cell heterologous expression system, coexpression of the D2 loop along with the intact P/rds and Rom-1 hindered the association of the two full-length proteins [19].
  • The loss of Rds only appears to affect the shape of the OS, as the inner segment and connecting cilium remain intact [20].

Associations of Prph2 with chemical compounds


Physical interactions of Prph2


Co-localisations of Prph2


Regulatory relationships of Prph2

  • The data suggest that NGF1-A mRNA is differentially regulated by light and dark stimuli in the retina and an absence of rod outer segments in the rds mutant retina does not alter the normal diurnal cycle of NGF1-A mRNA expression [25].

Other interactions of Prph2


Analytical, diagnostic and therapeutic context of Prph2


  1. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Ali, R.R., Sarra, G.M., Stephens, C., Alwis, M.D., Bainbridge, J.W., Munro, P.M., Fauser, S., Reichel, M.B., Kinnon, C., Hunt, D.M., Bhattacharya, S.S., Thrasher, A.J. Nat. Genet. (2000) [Pubmed]
  2. Photoreceptor peripherin is the normal product of the gene responsible for retinal degeneration in the rds mouse. Connell, G., Bascom, R., Molday, L., Reid, D., McInnes, R.R., Molday, R.S. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  3. Atypical gliosis in Müller cells of the slowly degenerating rds mutant mouse retina. Iandiev, I., Biedermann, B., Bringmann, A., Reichel, M.B., Reichenbach, A., Pannicke, T. Exp. Eye Res. (2006) [Pubmed]
  4. Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa. Liang, F.Q., Aleman, T.S., Dejneka, N.S., Dudus, L., Fisher, K.J., Maguire, A.M., Jacobson, S.G., Bennett, J. Mol. Ther. (2001) [Pubmed]
  5. A null mutation in the human peripherin/RDS gene in a family with autosomal dominant retinitis punctata albescens. Kajiwara, K., Sandberg, M.A., Berson, E.L., Dryja, T.P. Nat. Genet. (1993) [Pubmed]
  6. Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Kajiwara, K., Hahn, L.B., Mukai, S., Travis, G.H., Berson, E.L., Dryja, T.P. Nature (1991) [Pubmed]
  7. Identification of a photoreceptor-specific mRNA encoded by the gene responsible for retinal degeneration slow (rds). Travis, G.H., Brennan, M.B., Danielson, P.E., Kozak, C.A., Sutcliffe, J.G. Nature (1989) [Pubmed]
  8. The retinal degeneration slow (rds) gene product is a photoreceptor disc membrane-associated glycoprotein. Travis, G.H., Sutcliffe, J.G., Bok, D. Neuron (1991) [Pubmed]
  9. Genetic expression of cyclic GMP phosphodiesterase activity defines abnormal photoreceptor differentiation in neurological mutants of inherited retinal degeneration. Fletcher, R.T., Sanyal, S., Krishna, G., Aguirre, G., Chader, G.J. J. Neurochem. (1986) [Pubmed]
  10. Diurnal metabolism of dopamine in dystrophic retinas of homozygous and heterozygous retinal degeneration slow (rds) mice. Nir, I., Haque, R., Iuvone, P.M. Brain Res. (2000) [Pubmed]
  11. Regulation of cAMP by light and dopamine receptors is dysfunctional in photoreceptors of dystrophic retinal degeneration slow(rds) mice. Nir, I., Haque, R., Iuvone, P.M. Exp. Eye Res. (2001) [Pubmed]
  12. P2Y(2) receptor agonist INS37217 enhances functional recovery after detachment caused by subretinal injection in normal and rds mice. Nour, M., Quiambao, A.B., Peterson, W.M., Al-Ubaidi, M.R., Naash, M.I. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  13. Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Chang, G.Q., Hao, Y., Wong, F. Neuron (1993) [Pubmed]
  14. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Portera-Cailliau, C., Sung, C.H., Nathans, J., Adler, R. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  15. Deficiency of rds/peripherin causes photoreceptor death in mouse models of digenic and dominant retinitis pigmentosa. Kedzierski, W., Nusinowitz, S., Birch, D., Clarke, G., McInnes, R.R., Bok, D., Travis, G.H. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  16. The R172W mutation in peripherin/rds causes a cone-rod dystrophy in transgenic mice. Ding, X.Q., Nour, M., Ritter, L.M., Goldberg, A.F., Fliesler, S.J., Naash, M.I. Hum. Mol. Genet. (2004) [Pubmed]
  17. Improvement of neuronal visual responses in the superior colliculus in Prph2(Rd2/Rd2) mice following gene therapy. Schlichtenbrede, F.C., Smith, A.J., Bainbridge, J.W., Thrasher, A.J., Salt, T.E., Ali, R.R. Mol. Cell. Neurosci. (2004) [Pubmed]
  18. Characterization of Peripherin/rds and Rom-1 Transport in Rod Photoreceptors of Transgenic and Knockout Animals. Lee, E.S., Burnside, B., Flannery, J.G. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  19. Role of the second intradiscal loop of peripherin/rds in homo and hetero associations. Ding, X.Q., Stricker, H.M., Naash, M.I. Biochemistry (2005) [Pubmed]
  20. Retention of function without normal disc morphogenesis occurs in cone but not rod photoreceptors. Farjo, R., Skaggs, J.S., Nagel, B.A., Quiambao, A.B., Nash, Z.A., Fliesler, S.J., Naash, M.I. J. Cell Biol. (2006) [Pubmed]
  21. Transgenic analysis of rds/peripherin N-glycosylation: effect on dimerization, interaction with rom1, and rescue of the rds null phenotype. Kedzierski, W., Bok, D., Travis, G.H. J. Neurochem. (1999) [Pubmed]
  22. Low docosahexaenoic acid levels in rod outer segment membranes of mice with rds/peripherin and P216L peripherin mutations. Anderson, R.E., Maude, M.B., Bok, D. Invest. Ophthalmol. Vis. Sci. (2001) [Pubmed]
  23. Calcium-Dependent Association of Calmodulin with the C-Terminal Domain of the Tetraspanin Protein Peripherin/rds. Edrington, T.C., Yeagle, P.L., Gretzula, C.L., Boesze-Battaglia, K. Biochemistry (2007) [Pubmed]
  24. Immunocytochemical colocalization of clusterin in apoptotic photoreceptor cells in retinal degeneration slow rds mutant mouse retinas. Agarwal, N., Jomary, C., Jones, S.E., O'Rourke, K., Chaitin, M., Wordinger, R.J., Murphy, B.F. Biochem. Biophys. Res. Commun. (1996) [Pubmed]
  25. Diurnal expression of NGF1-A mRNA in retinal degeneration slow (rds) mutant mouse retina. Agarwal, N. FEBS Lett. (1994) [Pubmed]
  26. High yield of cells committed to the photoreceptor fate from expanded mouse retinal stem cells. Merhi-Soussi, F., Angénieux, B., Canola, K., Kostic, C., Tekaya, M., Hornfeld, D., Arsenijevic, Y. Stem Cells (2006) [Pubmed]
  27. Basic fibroblast growth factor: increased gene expression in inherited and light-induced photoreceptor degeneration. Gao, H., Hollyfield, J.G. Exp. Eye Res. (1996) [Pubmed]
  28. Localization of the rhodopsin gene to the distal half of mouse chromosome 6. Elliott, R.W., Sparkes, R.S., Mohandas, T., Grant, S.G., McGinnis, J.F. Genomics (1990) [Pubmed]
  29. Non-cell-autonomous photoreceptor degeneration in rds mutant mice mosaic for expression of a rescue transgene. Kedzierski, W., Bok, D., Travis, G.H. J. Neurosci. (1998) [Pubmed]
  30. Molecular cloning, membrane topology, and localization of bovine rom-1 in rod and cone photoreceptor cells. Moritz, O.L., Molday, R.S. Invest. Ophthalmol. Vis. Sci. (1996) [Pubmed]
WikiGenes - Universities