The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Opn5  -  opsin 5

Mus musculus

Synonyms: G-protein coupled receptor 136, G-protein coupled receptor PGR12, Gpr136, Neuropsin, Opsin-5, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Opn5


Psychiatry related information on Opn5

  • The results suggest that generation of reactive oxygen species has an important role in neuropsin transcript in the limbic areas which might be related to the disturbance in avoidance learning [5].

High impact information on Opn5


Chemical compound and disease context of Opn5


Biological context of Opn5


Anatomical context of Opn5


Associations of Opn5 with chemical compounds

  • An action spectrum for the PLR in rd/rd cl mice demonstrates that over the range 420-625 nm, this response is driven by a single opsin/vitamin A-based photopigment with peak sensitivity around 479 nm (opsin photopigment/OP479) [20].
  • These data, in conjunction with the established role of CRY2 in photoperiodism in plants, lead us to propose that mammals have a vitamin A-based photopigment (opsin) for vision and a vitamin B2-based pigment (cryptochrome) for entrainment of the circadian clock [21].
  • Neuropsin is a novel serine protease, the expression of which is highly localized in the limbic areas of the mouse brain and which is suggested to be involved in kindling epileptogenesis and hippocampal plasticity [22].
  • Serine proteinase inhibitor 3 and murinoglobulin I are potent inhibitors of neuropsin in adult mouse brain [23].
  • After preincubation of the isolated retina with 9-cis-retinal, neonatal mouse rods showed the same sensitivity as adult rods, suggesting the presence of a small amount of free opsin being responsible for their lower sensitivity [24].

Physical interactions of Opn5


Enzymatic interactions of Opn5


Co-localisations of Opn5

  • Also, WOX1 colocalized with fragments of opsin-positive cones [26].

Regulatory relationships of Opn5


Other interactions of Opn5

  • Rhodopsin and opsin form structural dimers that are organized in paracrystalline arrays [29].
  • METHODS: An RPGRIP expression cassette, driven by a mouse opsin promoter, was packaged into recombinant adeno-associated virus (AAV) [30].
  • We can preclude retinal contamination of RPE extracts as levels of Opn4 expression were higher in the RPE than in the retina, and the expression of rod opsin and Thy1 (a marker of the RGC layer) were barely detectable in RPE extracts [31].
  • With regards to photoreceptors, NSE and SYN immunoreactive cones were seen in transplants from 14-16 weeks of age, but cone opsin immunoreactivity was not seen until 25 weeks [32].
  • Second, the role of IRBP gene and protein expression in development was assessed by determining if their expression occurs before that of opsin [33].

Analytical, diagnostic and therapeutic context of Opn5


  1. Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis. Woodruff, M.L., Wang, Z., Chung, H.Y., Redmond, T.M., Fain, G.L., Lem, J. Nat. Genet. (2003) [Pubmed]
  2. Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Jin, M., Li, S., Moghrabi, W.N., Sun, H., Travis, G.H. Cell (2005) [Pubmed]
  3. Gene regulation and differentiation in vertebrate ocular tissues. Kodama, R., Eguchi, G. Curr. Opin. Genet. Dev. (1994) [Pubmed]
  4. Targeted disruption of SPI3/Serpinb6 does not result in developmental or growth defects, leukocyte dysfunction, or susceptibility to stroke. Scarff, K.L., Ung, K.S., Nandurkar, H., Crack, P.J., Bird, C.H., Bird, P.I. Mol. Cell. Biol. (2004) [Pubmed]
  5. Effects of oxidative stress on the expression of limbic-specific protease neuropsin and avoidance learning in mice. Akita, H., Matsuyama, T., Iso, H., Sugita, M., Yoshida, S. Brain Res. (1997) [Pubmed]
  6. A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Chen, P., Hao, W., Rife, L., Wang, X.P., Shen, D., Chen, J., Ogden, T., Van Boemel, G.B., Wu, L., Yang, M., Fong, H.K. Nat. Genet. (2001) [Pubmed]
  7. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Ng, L., Hurley, J.B., Dierks, B., Srinivas, M., Saltó, C., Vennström, B., Reh, T.A., Forrest, D. Nat. Genet. (2001) [Pubmed]
  8. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Marszalek, J.R., Liu, X., Roberts, E.A., Chui, D., Marth, J.D., Williams, D.S., Goldstein, L.S. Cell (2000) [Pubmed]
  9. Isomerization and oxidation of vitamin a in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. Mata, N.L., Radu, R.A., Clemmons, R.C., Travis, G.H. Neuron (2002) [Pubmed]
  10. Extracellular serine protease neuropsin (KLK8) modulates neurite outgrowth and fasciculation of mouse hippocampal neurons in culture. Oka, T., Akisada, M., Okabe, A., Sakurai, K., Shiosaka, S., Kato, K. Neurosci. Lett. (2002) [Pubmed]
  11. Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. Tarttelin, E.E., Bellingham, J., Hankins, M.W., Foster, R.G., Lucas, R.J. FEBS Lett. (2003) [Pubmed]
  12. Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Humphries, M.M., Rancourt, D., Farrar, G.J., Kenna, P., Hazel, M., Bush, R.A., Sieving, P.A., Sheils, D.M., McNally, N., Creighton, P., Erven, A., Boros, A., Gulya, K., Capecchi, M.R., Humphries, P. Nat. Genet. (1997) [Pubmed]
  13. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice. Weng, J., Mata, N.L., Azarian, S.M., Tzekov, R.T., Birch, D.G., Travis, G.H. Cell (1999) [Pubmed]
  14. Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter. al-Ubaidi, M.R., Font, R.L., Quiambao, A.B., Keener, M.J., Liou, G.I., Overbeek, P.A., Baehr, W. J. Cell Biol. (1992) [Pubmed]
  15. Constitutive activation of phototransduction by K296E opsin is not a cause of photoreceptor degeneration. Li, T., Franson, W.K., Gordon, J.W., Berson, E.L., Dryja, T.P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  16. Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Lem, J., Krasnoperova, N.V., Calvert, P.D., Kosaras, B., Cameron, D.A., Nicolò, M., Makino, C.L., Sidman, R.L. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  17. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Flannery, J.G., Zolotukhin, S., Vaquero, M.I., LaVail, M.M., Muzyczka, N., Hauswirth, W.W. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  18. Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Naash, M.I., Hollyfield, J.G., al-Ubaidi, M.R., Baehr, W. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  19. Myosin VIIa participates in opsin transport through the photoreceptor cilium. Liu, X., Udovichenko, I.P., Brown, S.D., Steel, K.P., Williams, D.S. J. Neurosci. (1999) [Pubmed]
  20. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Lucas, R.J., Douglas, R.H., Foster, R.G. Nat. Neurosci. (2001) [Pubmed]
  21. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Miyamoto, Y., Sancar, A. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  22. Crystal structure of neuropsin, a hippocampal protease involved in kindling epileptogenesis. Kishi, T., Kato, M., Shimizu, T., Kato, K., Matsumoto, K., Yoshida, S., Shiosaka, S., Hakoshima, T. J. Biol. Chem. (1999) [Pubmed]
  23. Serine proteinase inhibitor 3 and murinoglobulin I are potent inhibitors of neuropsin in adult mouse brain. Kato, K., Kishi, T., Kamachi, T., Akisada, M., Oka, T., Midorikawa, R., Takio, K., Dohmae, N., Bird, P.I., Sun, J., Scott, F., Miyake, Y., Yamamoto, K., Machida, A., Tanaka, T., Matsumoto, K., Shibata, M., Shiosaka, S. J. Biol. Chem. (2001) [Pubmed]
  24. Rod sensitivity of neonatal mouse and rat. Luo, D.G., Yau, K.W. J. Gen. Physiol. (2005) [Pubmed]
  25. Effects of fibronectin cleaved by neuropsin on cell adhesion and migration. Tani, N., Matsumoto, K., Ota, I., Yoshida, S., Takada, Y., Shiosaka, S., Matsuura, N. Neurosci. Res. (2001) [Pubmed]
  26. Light-induced retinal damage involves tyrosine 33 phosphorylation, mitochondrial and nuclear translocation of WW domain-containing oxidoreductase in vivo. Chen, S.T., Chuang, J.I., Cheng, C.L., Hsu, L.J., Chang, N.S. Neuroscience (2005) [Pubmed]
  27. Distribution of serine proteinase inhibitor, clade B, member 6 (Serpinb6) in the adult mouse brain. Kishi, T., Matsuhashi, H., Bird, P.I., Kato, K. Brain Res. Gene Expr. Patterns (2002) [Pubmed]
  28. Expression of a mutant opsin gene increases the susceptibility of the retina to light damage. Wang, M., Lam, T.T., Tso, M.O., Naash, M.I. Vis. Neurosci. (1997) [Pubmed]
  29. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. Liang, Y., Fotiadis, D., Filipek, S., Saperstein, D.A., Palczewski, K., Engel, A. J. Biol. Chem. (2003) [Pubmed]
  30. Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. Pawlyk, B.S., Smith, A.J., Buch, P.K., Adamian, M., Hong, D.H., Sandberg, M.A., Ali, R.R., Li, T. Invest. Ophthalmol. Vis. Sci. (2005) [Pubmed]
  31. Expression of the candidate circadian photopigment melanopsin (Opn4) in the mouse retinal pigment epithelium. Peirson, S.N., Bovee-Geurts, P.H., Lupi, D., Jeffery, G., DeGrip, W.J., Foster, R.G. Brain Res. Mol. Brain Res. (2004) [Pubmed]
  32. Photoreceptor and glial markers in human embryonic retina and in human embryonic retinal transplants to rat retina. Seiler, M.J., Aramant, R.B. Brain Res. Dev. Brain Res. (1994) [Pubmed]
  33. Timing of interphotoreceptor retinoid-binding protein (IRBP) gene expression and hypomethylation in developing mouse retina. Liou, G.I., Wang, M., Matragoon, S. Dev. Biol. (1994) [Pubmed]
  34. Expression and activity-dependent changes of a novel limbic-serine protease gene in the hippocampus. Chen, Z.L., Yoshida, S., Kato, K., Momota, Y., Suzuki, J., Tanaka, T., Ito, J., Nishino, H., Aimoto, S., Kiyama, H. J. Neurosci. (1995) [Pubmed]
  35. Opsin synthesis and mRNA levels in dystrophic retinas devoid of outer segments in retinal degeneration slow (rds) mice. Agarwal, N., Nir, I., Papermaster, D.S. J. Neurosci. (1990) [Pubmed]
  36. Sp4 is expressed in retinal neurons, activates transcription of photoreceptor-specific genes, and synergizes with Crx. Lerner, L.E., Peng, G.H., Gribanova, Y.E., Chen, S., Farber, D.B. J. Biol. Chem. (2005) [Pubmed]
WikiGenes - Universities