The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Insig1  -  insulin induced gene 1

Mus musculus

Synonyms: 1810013C12Rik, INSIG-1, Insig-1, Insulin-induced gene 1 protein
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Insig1

  • Insulin-induced hypoglycemia, however, stimulated ghrelin secretion in the fasted fatty rats [1].
  • Insulin-induced reactivation of an inactive herpes simplex thymidine kinase gene [2].
  • In the present studies, we investigated whether insulin-induced HIF-1alpha expression is a prerequisite for insulin to induce other trophic effects in MiaPaCa2 human pancreatic cancer cells and whether inhibition of HIF-1alpha expression would decrease tumor glycolysis and improve host energy homeostasis [3].
  • Insulin-induced activation of G3PAT was also blocked by pretreatment of intact myocytes with pertussis toxin and by prior addition, to homogenates, of an antiserum that recognizes the C-terminal decapeptide of Gi alpha.(ABSTRACT TRUNCATED AT 250 WORDS)[4]
  • Insulin induced Krebs II ascites cells to attach to the substratum and to adopt a flattened morphology associated with normal adhesion and movement [5].
 

High impact information on Insig1

  • Insulin induced the release of adenosine trisphosphate (ATP), adenosine, and serotonin from platelet-dense granules in a NO-dependent manner [6].
  • Severe facial clefting in Insig-deficient mouse embryos caused by sterol accumulation and reversed by lovastatin [7].
  • We produced mice with germline disruption of the Insig2 gene and Cre-mediated disruption of the Insig1 gene in liver [8].
  • Schoenheimer effect explained--feedback regulation of cholesterol synthesis in mice mediated by Insig proteins [8].
  • In cultured cells, Insig proteins are required for sterol-mediated inhibition of the processing of sterol regulatory element-binding proteins (SREBPs) to their nuclear forms [8].
 

Biological context of Insig1

 

Anatomical context of Insig1

  • Insig-1 and -2 are closely related proteins of the endoplasmic reticulum (ER) that block proteolytic activation of sterol regulatory element-binding proteins (SREBPs), transcription factors that activate the synthesis of cholesterol and fatty acids in liver and other organs [13].
  • Insig-1 was identified as a PPARgamma target gene using microarray analysis of mRNA from the white adipose tissue of diabetic (db/db) animals treated with PPARgamma agonists [9].
  • Insulin induced a marked glycogen synthase activity in wild-type and heterozygous primary hepatocytes; interestingly, this response was absent in IRS-2(-/-) cells but was rescued by infection with adenoviral IRS-2 [14].
  • In differentiating 3T3-L1 cells, insig-1 and -2 rose in parallel with aP2 mRNA during differentiation [15].
  • Transfection of mouse or human insig-1 into 3T3-L1 preadipocytes completely prevented oil red O staining and blocked upregulation of aP2, peroxisome proliferator-activated receptor gamma2, and carbohydrate response element-binding protein, while reducing down-regulation of preadipocyte factor 1 [15].
 

Associations of Insig1 with chemical compounds

 

Regulatory relationships of Insig1

 

Other interactions of Insig1

 

Analytical, diagnostic and therapeutic context of Insig1

References

  1. Delayed short-term secretory regulation of ghrelin in obese animals: evidenced by a specific RIA for the active form of ghrelin. Ariyasu, H., Takaya, K., Hosoda, H., Iwakura, H., Ebihara, K., Mori, K., Ogawa, Y., Hosoda, K., Akamizu, T., Kojima, M., Kangawa, K., Nakao, K. Endocrinology (2002) [Pubmed]
  2. Insulin-induced reactivation of an inactive herpes simplex thymidine kinase gene. Clough, D.W., Morse, B.S., Kucherlapati, R.S., Davidson, R.L. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  3. Hypoxia inducible factor-1 mediates effects of insulin on pancreatic cancer cells and disturbs host energy homeostasis. Wang, F., Li, S.S., Segersvärd, R., Strömmer, L., Sundqvist, K.G., Holgersson, J., Permert, J. Am. J. Pathol. (2007) [Pubmed]
  4. Insulin activates glycerol-3-phosphate acyltransferase (de novo phosphatidic acid synthesis) through a phospholipid-derived mediator. Apparent involvement of Gi alpha and activation of a phospholipase C. Vila, M.C., Milligan, G., Standaert, M.L., Farese, R.V. Biochemistry (1990) [Pubmed]
  5. Insulin induces cell adhesion and normal flattened morphology in Krebs II ascites tumour cells. Pryme, I.F., Hesketh, J.E. Cell Biol. Int. Rep. (1990) [Pubmed]
  6. Insulin induces the release of vasodilator compounds from platelets by a nitric oxide-G kinase-VAMP-3-dependent pathway. Randriamboavonjy, V., Schrader, J., Busse, R., Fleming, I. J. Exp. Med. (2004) [Pubmed]
  7. Severe facial clefting in Insig-deficient mouse embryos caused by sterol accumulation and reversed by lovastatin. Engelking, L.J., Evers, B.M., Richardson, J.A., Goldstein, J.L., Brown, M.S., Liang, G. J. Clin. Invest. (2006) [Pubmed]
  8. Schoenheimer effect explained--feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. Engelking, L.J., Liang, G., Hammer, R.E., Takaishi, K., Kuriyama, H., Evers, B.M., Li, W.P., Horton, J.D., Goldstein, J.L., Brown, M.S. J. Clin. Invest. (2005) [Pubmed]
  9. Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis. Kast-Woelbern, H.R., Dana, S.L., Cesario, R.M., Sun, L., de Grandpre, L.Y., Brooks, M.E., Osburn, D.L., Reifel-Miller, A., Klausing, K., Leibowitz, M.D. J. Biol. Chem. (2004) [Pubmed]
  10. Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in l6 myotubes. Huang, C., Thirone, A.C., Huang, X., Klip, A. J. Biol. Chem. (2005) [Pubmed]
  11. Insulin-induced adipocyte differentiation. Activation of CREB rescues adipogenesis from the arrest caused by inhibition of prenylation. Klemm, D.J., Leitner, J.W., Watson, P., Nesterova, A., Reusch, J.E., Goalstone, M.L., Draznin, B. J. Biol. Chem. (2001) [Pubmed]
  12. Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model. Ji, C., Chan, C., Kaplowitz, N. J. Hepatol. (2006) [Pubmed]
  13. Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Yabe, D., Komuro, R., Liang, G., Goldstein, J.L., Brown, M.S. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  14. Molecular mechanisms of insulin resistance in IRS-2-deficient hepatocytes. Valverde, A.M., Burks, D.J., Fabregat, I., Fisher, T.L., Carretero, J., White, M.F., Benito, M. Diabetes (2003) [Pubmed]
  15. Insig-1 "brakes" lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Li, J., Takaishi, K., Cook, W., McCorkle, S.K., Unger, R.H. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  16. Increased insulin sensitivity in IGF-I receptor--deficient brown adipocytes. Mur, C., Valverde, A.M., Kahn, C.R., Benito, M. Diabetes (2002) [Pubmed]
  17. Insulin-induced p21ras activation does not require protein kinase C, but a protein sensitive to phenylarsine oxide. Medema, R.H., Burgering, B.M., Bos, J.L. J. Biol. Chem. (1991) [Pubmed]
  18. The acute and chronic effects of glucocorticoids on insulin receptor and insulin responsiveness. Transient fluctuations in intracellular receptor level parallel transient fluctuations in responsiveness. Knutson, V.P. J. Biol. Chem. (1986) [Pubmed]
  19. Identification and modulation of a caveolae-dependent signal pathway that regulates plasminogen activator inhibitor-1 in insulin-resistant adipocytes. Venugopal, J., Hanashiro, K., Yang, Z.Z., Nagamine, Y. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  20. Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Yamauchi, T., Tobe, K., Tamemoto, H., Ueki, K., Kaburagi, Y., Yamamoto-Honda, R., Takahashi, Y., Yoshizawa, F., Aizawa, S., Akanuma, Y., Sonenberg, N., Yazaki, Y., Kadowaki, T. Mol. Cell. Biol. (1996) [Pubmed]
  21. Insulin and glucocorticoids differentially regulate leptin transcription and secretion in brown adipocytes. Buyse, M., Viengchareun, S., Bado, A., Lombès, M. FASEB J. (2001) [Pubmed]
  22. p21(Cip-1/SDI-1/WAF-1) expression via the mitogen-activated protein kinase signaling pathway in insulin-induced chondrogenic differentiation of ATDC5 cells. Nakajima, M., Negishi, Y., Tanaka, H., Kawashima, K. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  23. Insulin-induced tyrosine phosphorylation of a M(r) 70,000 protein revealed by association with the Src homology 2 (SH2) and SH3 domains of p120GAP and Grb2. Medema, J.P., Pronk, G.J., de Vries-Smits, A.M., Clark, R., McCormick, F., Bos, J.L. Cell Growth Differ. (1996) [Pubmed]
  24. Equilibrium model for insulin-induced receptor down-regulation. Regulation of insulin receptors in differentiated BC3H-1 myocytes. Standaert, M.L., Pollet, R.J. J. Biol. Chem. (1984) [Pubmed]
  25. Insulin responsiveness of a mouse mammary adenocarcinoma culture in the expression of two proliferation-derived cytoplasmic proteins. Papaphilis, A.D. Int. J. Biochem. (1985) [Pubmed]
 
WikiGenes - Universities