The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

MIR410  -  microRNA 410

Homo sapiens

Synonyms: MIRN410, hsa-mir-410
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of MIRN410

  • Aberrantly expressed miRNA or their targets will provide mechanistic insight and therapeutic targets for cholangiocarcinoma [1].
  • We show that the microRNA miR-155 can be processed from sequences present in BIC RNA, a spliced and polyadenylated but non-protein-coding RNA that accumulates in lymphoma cells [2].
  • Activation of an oncogenic microRNA cistron by provirus integration [3].
  • We found that microRNA Mir-17-5p has extensive complementarity to the mRNA of AIB1 (named for "amplified in breast cancer 1") [4].
  • In this study, we report for the first time reduced expression of the let-7 microRNA in human lung cancers [5].
 

Psychiatry related information on MIRN410

 

High impact information on MIRN410

 

Biological context of MIRN410

  • We present rna22, a method for identifying microRNA binding sites and their corresponding heteroduplexes [8].
  • Recent advances have led to a more detailed understanding of RNA interference and its role in microRNA biogenesis and function [11].
  • MicroRNAs have recently emerged as key posttranscriptional regulators of eukaryotic gene expression, yet our understanding of how microRNA expression is itself controlled has remained rudimentary [12].
  • Here, we show that miR-181, a microRNA that is strongly upregulated during differentiation, participates in establishing the muscle phenotype [13].
  • Alterations in miRNA expression can contribute to tumor growth by modulating the functional expression of critical genes involved in tumor cell proliferation or survival [1].
 

Anatomical context of MIRN410

  • We show here that the repression of nPTB expression during myoblast differentiation results from its targeting by the muscle-restricted microRNA miR-133 [14].
  • Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines [1].
  • Discovered just over a decade ago, microRNA (miRNA) is now recognized as one of the major regulatory gene families in eukaryotic cells [15].
  • This review focuses on Drosophila FMRP as (i) a negative regulator of translation via noncoding RNA, including microRNA and adaptor BC1 RNA-mediated silencing mechanisms; (ii) a negative regulator of microtubule cytoskeleton stability; and (iii) a negative regulator of neuronal architectural complexity [16].
  • Finally, we compared the microRNA expression of megakaryoblastic leukemic cell lines with that of in vitro differentiated megakaryocytes and CD34(+) progenitors [17].
 

Associations of MIRN410 with chemical compounds

  • Other studies reveal how the microRNA pathway and signaling are related to FMRP function through the metabotropic glutamate receptor [18].
  • We describe the development of a lentiviral vector platform, pSLIK (single lentivector for inducible knockdown), which permits tetracycline-regulated expression of microRNA-like short hairpin RNAs from a single viral infection of any naïve cell system [19].
  • The microRNA (miR29b) molecule tested is targeted to the mRNA for the dihydrolipoamide branched chain acyltransferase component of BCKD and prevents translation when bound [20].
  • In addition, ABA signaling is further modulated by mRNA maturation and stability, microRNA (miRNA) levels, nuclear speckling, and protein degradation [21].
  • Nonisotopic detection of microRNA using digoxigenin labeled RNA probes [22].
 

Physical interactions of MIRN410

 

Enzymatic interactions of MIRN410

  • The bidentate RNase III Dicer cleaves microRNA precursors to generate the 21-23 nt long mature RNAs [24].
 

Regulatory relationships of MIRN410

  • PURPOSE: The aim of this study was to investigate the role of p53 in regulating micro-RNA (miRNA) expression due to its function as a transcription factor [25].
 

Other interactions of MIRN410

 

Analytical, diagnostic and therapeutic context of MIRN410

  • CONCLUSIONS: Alterations in miRNA expression contribute to tumor growth and response to chemotherapy [1].
  • Expression of selected miRNA and their precursors was evaluated by Northern blots and real-time polymerase chain reaction, respectively [1].
  • To quantify microRNA expression, we employed a highly sensitive technique that uses stem-loop primers for reverse transcription followed by real-time PCR [30].
  • The genetic dissection of hot spots for chromosomal abnormalities in the age of the sequenced human genome resulted in the discovery that microRNA (miRNA) genes, encoding for a class of small noncoding RNAs, frequently resides in such genomic regions [31].
  • Global sequence analysis revealed that over 46% of the 326 miRNA putative promoters contain potential p53-binding sites, suggesting that some of these miRNAs were potentially regulated directly by wt-p53 [25].

References

  1. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Meng, F., Henson, R., Lang, M., Wehbe, H., Maheshwari, S., Mendell, J.T., Jiang, J., Schmittgen, T.D., Patel, T. Gastroenterology (2006) [Pubmed]
  2. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Eis, P.S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M.F., Lund, E., Dahlberg, J.E. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  3. Activation of an oncogenic microRNA cistron by provirus integration. Wang, C.L., Wang, B.B., Bartha, G., Li, L., Channa, N., Klinger, M., Killeen, N., Wabl, M. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  4. Mir-17-5p Regulates Breast Cancer Cell Proliferation by Inhibiting Translation of AIB1 mRNA. Hossain, A., Kuo, M.T., Saunders, G.F. Mol. Cell. Biol. (2006) [Pubmed]
  5. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., Harano, T., Yatabe, Y., Nagino, M., Nimura, Y., Mitsudomi, T., Takahashi, T. Cancer Res. (2004) [Pubmed]
  6. First in vivo evidence of microRNA-induced fragile X mental retardation syndrome. Lin, S.L., Chang, S.J., Ying, S.Y. Mol. Psychiatry (2006) [Pubmed]
  7. Micromanaging the response to Hedgehog. Ingham, P. Nat. Genet. (2007) [Pubmed]
  8. A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes. Miranda, K.C., Huynh, T., Tay, Y., Ang, Y.S., Tam, W.L., Thomson, A.M., Lim, B., Rigoutsos, I. Cell (2006) [Pubmed]
  9. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Gregory, R.I., Chendrimada, T.P., Cooch, N., Shiekhattar, R. Cell (2005) [Pubmed]
  10. Involvement of microRNA in AU-rich element-mediated mRNA instability. Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., Di Padova, F., Lin, S.C., Gram, H., Han, J. Cell (2005) [Pubmed]
  11. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Murchison, E.P., Hannon, G.J. Curr. Opin. Cell Biol. (2004) [Pubmed]
  12. Transcription and processing of human microRNA precursors. Cullen, B.R. Mol. Cell (2004) [Pubmed]
  13. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Naguibneva, I., Ameyar-Zazoua, M., Polesskaya, A., Ait-Si-Ali, S., Groisman, R., Souidi, M., Cuvellier, S., Harel-Bellan, A. Nat. Cell Biol. (2006) [Pubmed]
  14. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Boutz, P.L., Chawla, G., Stoilov, P., Black, D.L. Genes Dev. (2007) [Pubmed]
  15. Genomics of microRNA. Kim, V.N., Nam, J.W. Trends Genet. (2006) [Pubmed]
  16. Fathoming fragile X in fruit flies. Zhang, Y.Q., Broadie, K. Trends Genet. (2005) [Pubmed]
  17. MicroRNA fingerprints during human megakaryocytopoiesis. Garzon, R., Pichiorri, F., Palumbo, T., Iuliano, R., Cimmino, A., Aqeilan, R., Volinia, S., Bhatt, D., Alder, H., Marcucci, G., Calin, G.A., Liu, C.G., Bloomfield, C.D., Andreeff, M., Croce, C.M. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  18. Transcription, translation and fragile X syndrome. Garber, K., Smith, K.T., Reines, D., Warren, S.T. Curr. Opin. Genet. Dev. (2006) [Pubmed]
  19. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Shin, K.J., Wall, E.A., Zavzavadjian, J.R., Santat, L.A., Liu, J., Hwang, J.I., Rebres, R., Roach, T., Seaman, W., Simon, M.I., Fraser, I.D. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  20. Human microRNA (miR29b) expression controls the amount of branched chain alpha-ketoacid dehydrogenase complex in a cell. Mersey, B.D., Jin, P., Danner, D.J. Hum. Mol. Genet. (2005) [Pubmed]
  21. Regulatory networks of the phytohormone abscisic acid. Xie, Z., Ruas, P., Shen, Q.J. Vitam. Horm. (2005) [Pubmed]
  22. Nonisotopic detection of microRNA using digoxigenin labeled RNA probes. Ramkissoon, S.H., Mainwaring, L.A., Sloand, E.M., Young, N.S., Kajigaya, S. Mol. Cell. Probes (2006) [Pubmed]
  23. The Drosha-DGCR8 complex in primary microRNA processing. Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., Kim, V.N. Genes Dev. (2004) [Pubmed]
  24. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Basyuk, E., Suavet, F., Doglio, A., Bordonné, R., Bertrand, E. Nucleic Acids Res. (2003) [Pubmed]
  25. Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Xi, Y., Shalgi, R., Fodstad, O., Pilpel, Y., Ju, J. Clin. Cancer Res. (2006) [Pubmed]
  26. Coordinate Suppression of ERBB2 and ERBB3 by Enforced Expression of Micro-RNA miR-125a or miR-125b. Scott, G.K., Goga, A., Bhaumik, D., Berger, C.E., Sullivan, C.S., Benz, C.C. J. Biol. Chem. (2007) [Pubmed]
  27. A role for the P-body component GW182 in microRNA function. Liu, J., Rivas, F.V., Wohlschlegel, J., Yates, J.R., Parker, R., Hannon, G.J. Nat. Cell Biol. (2005) [Pubmed]
  28. Ribonuclease activity and RNA binding of recombinant human Dicer. Provost, P., Dishart, D., Doucet, J., Frendewey, D., Samuelsson, B., Rådmark, O. EMBO J. (2002) [Pubmed]
  29. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. Rosenberg, M.I., Georges, S.A., Asawachaicharn, A., Analau, E., Tapscott, S.J. J. Cell Biol. (2006) [Pubmed]
  30. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Gaur, A., Jewell, D.A., Liang, Y., Ridzon, D., Moore, J.H., Chen, C., Ambros, V.R., Israel, M.A. Cancer Res. (2007) [Pubmed]
  31. MicroRNAs and chromosomal abnormalities in cancer cells. Calin, G.A., Croce, C.M. Oncogene (2006) [Pubmed]
 
WikiGenes - Universities