The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SLC15A2  -  solute carrier family 15 (oligopeptide...

Homo sapiens

Synonyms: Kidney H(+)/peptide cotransporter, Oligopeptide transporter, kidney isoform, PEPT2, Peptide transporter 2, Solute carrier family 15 member 2
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SLC15A2

 

High impact information on SLC15A2

 

Chemical compound and disease context of SLC15A2

 

Biological context of SLC15A2

  • Also, zebrafish pept2 exhibited 23 exons and 22 introns, whereas human and rodent pept2 genes contain 22 exons and 21 introns only [7].
  • We characterized the functional properties of a novel zebrafish peptide transporter orthologous to mammalian and avian PEPT2, described its gene (pept2) structure, and determined mRNA tissue distribution [7].
  • We then compared transepithelial transport of the prototypical substrate (3)H-glycylsarcosine in all donor cultures in the absence and presence of known inhibitors of hPEPT2 to ascertain the phenotype of functionally expressed hPepT2 in the upper airway epithelium [8].
  • Real-time PCR analysis of the hPepT2 mRNA message revealed no significant differences among genotypes. hPEPT2 was expressed on the apical membrane in all donor specimens, demonstrated by cell surface biotinylation and Western analysis (104 kD) [8].
  • Genetic variants of the human H+/dipeptide transporter PEPT2: analysis of haplotype functions [9].
  • Epidermal growth factor (EGF) inhibited the expression of PEPT2 and the uptake of the dipeptide glycylsarcosine in the rat kidney proximal cell line SKPT0193 Cl.2 [10].
 

Anatomical context of SLC15A2

  • We have individually mutated each of these histidyl residues in hPEPT1 and in hPEPT2 and compared the catalytic function of the mutants with that of their respective wild type transporters by expressing the transporters in Xenopus laevis oocytes and also in HeLa cells [11].
  • These data imply CNT3 may play a specialized role in nucleoside accumulation in milk and may identify an important role for PEPT2 and OATP-A transporters at the lactating mammary epithelium [12].
  • Transport of the phosphonodipeptide alafosfalin by the H+/peptide cotransporters PEPT1 and PEPT2 in intestinal and renal epithelial cells [13].
  • Tubular reabsorption of peptide-like drugs such as beta-lactam antibiotics across the brush-border membranes appears to be mediated by two distinct H+/peptide cotransporters: PEPT1 and PEPT2 [14].
  • PEPT2 is a high-affinity H+/dipeptide transporter expressed in kidney, brain, lung, and mammary gland [9].
 

Associations of SLC15A2 with chemical compounds

  • Alafosfalin strongly inhibited the uptake of [(14)C]glycylsarcosine with K(i) values of 0.19 +/- 0.01 mm and 0.07 +/- 0.01 mm for PEPT1 and PEPT2, respectively [13].
  • An array of inhibitors included dipeptides, beta-lactam antibiotics, bestatin, and ACE inhibitors. hPEPT2 exhibited saturable Michaelis-Menten-type kinetic parameters for GlySar, corroborating previously reported values for K(T) and J(max) [8].
  • The physiological role of PEPT2 in kidney is to reabsorb small peptides generated by luminal peptidases [9].
  • Transfection of PDZK1 increased the uptake of glycylsarcosine by PEPT2, whereas such stimulation was not observed for PEPT2 with the last four amino acids deleted [15].
  • We conclude that valacyclovir is a substrate for the peptide transporters PEPT1 and PEPT2 and that a peptide bond is not a prerequisite for recognition as a substrate by the peptide transporters [16].
 

Physical interactions of SLC15A2

  • PDZK1 directly interacts with PEPT2, exerting functional regulation of its transporting activity [15].
 

Regulatory relationships of SLC15A2

  • RT-PCR analysis using primer pairs specific for the intestinal-type peptide transporter (PEPT1) or kidney-type (PEPT2) revealed that the transport system expressed in SK-ChA-1 and also in cells of the native rabbit bile duct is PEPT1 [17].
  • Furthermore, we clarified the mechanism of enhanced glycylsarcosine (Gly-Sar) transport activity in PEPT2-expressing HEK293 cells after the PDZK1 coexpression [18].
 

Other interactions of SLC15A2

  • The current findings imply the localization of PEPT2 within a protein network constructed from PDZK1 and other transporter proteins [15].
  • In contrast, PEPT2 and PHT2 were expressed only in bovine and human retina, and PEPT1 could not be detected [19].
  • Expression and functional characteristics of tubular transporters: P-glycoprotein, PEPT1, and PEPT2 in renal mass reduction and diabetes [20].
 

Analytical, diagnostic and therapeutic context of SLC15A2

 

References

  1. Molecular mechanisms of pulmonary peptidomimetic drug and peptide transport. Groneberg, D.A., Fischer, A., Chung, K.F., Daniel, H. Am. J. Respir. Cell Mol. Biol. (2004) [Pubmed]
  2. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung. Groneberg, D.A., Eynott, P.R., Döring, F., Dinh, Q.T., Oates, T., Barnes, P.J., Chung, K.F., Daniel, H., Fischer, A. Thorax (2002) [Pubmed]
  3. Role of PEPT2 in glycylsarcosine transport in astrocyte and glioma cultures. Xiang, J., Chiang, P.P., Hu, Y., Smith, D.E., Keep, R.F. Neurosci. Lett. (2006) [Pubmed]
  4. Identification of a renal cell line that constitutively expresses the kidney-specific high-affinity H+/peptide cotransporter. Brandsch, M., Brandsch, C., Prasad, P.D., Ganapathy, V., Hopfer, U., Leibach, F.H. FASEB J. (1995) [Pubmed]
  5. Peptide transporters in the intestine and the kidney. Leibach, F.H., Ganapathy, V. Annu. Rev. Nutr. (1996) [Pubmed]
  6. Differential recognition of beta -lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. Ganapathy, M.E., Brandsch, M., Prasad, P.D., Ganapathy, V., Leibach, F.H. J. Biol. Chem. (1995) [Pubmed]
  7. High-affinity peptide transporter PEPT2 (SLC15A2) of the zebrafish Danio rerio: functional properties, genomic organization, and expression analysis. Romano, A., Kottra, G., Barca, A., Tiso, N., Maffia, M., Argenton, F., Daniel, H., Storelli, C., Verri, T. Physiol. Genomics (2006) [Pubmed]
  8. Functional characterization of the peptide transporter PEPT2 in primary cultures of human upper airway epithelium. Bahadduri, P.M., D'Souza, V.M., Pinsonneault, J.K., Sadée, W., Bao, S., Knoell, D.L., Swaan, P.W. Am. J. Respir. Cell Mol. Biol. (2005) [Pubmed]
  9. Genetic variants of the human H+/dipeptide transporter PEPT2: analysis of haplotype functions. Pinsonneault, J., Nielsen, C.U., Sadée, W. J. Pharmacol. Exp. Ther. (2004) [Pubmed]
  10. Epidermal growth factor decreases PEPT2 transport capacity and expression in the rat kidney proximal tubule cell line SKPT0193 cl.2. Bravo, S.A., Nielsen, C.U., Amstrup, J., Frokjaer, S., Brodin, B. Am. J. Physiol. Renal. Physiol. (2004) [Pubmed]
  11. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2. Fei, Y.J., Liu, W., Prasad, P.D., Kekuda, R., Oblak, T.G., Ganapathy, V., Leibach, F.H. Biochemistry (1997) [Pubmed]
  12. Transporter gene expression in lactating and nonlactating human mammary epithelial cells using real-time reverse transcription-polymerase chain reaction. Alcorn, J., Lu, X., Moscow, J.A., McNamara, P.J. J. Pharmacol. Exp. Ther. (2002) [Pubmed]
  13. Transport of the phosphonodipeptide alafosfalin by the H+/peptide cotransporters PEPT1 and PEPT2 in intestinal and renal epithelial cells. Neumann, J., Bruch, M., Gebauer, S., Brandsch, M. Eur. J. Biochem. (2004) [Pubmed]
  14. Cellular and molecular aspects of drug transport in the kidney. Inui, K.I., Masuda, S., Saito, H. Kidney Int. (2000) [Pubmed]
  15. Screening of the interaction between xenobiotic transporters and PDZ proteins. Kato, Y., Yoshida, K., Watanabe, C., Sai, Y., Tsuji, A. Pharm. Res. (2004) [Pubmed]
  16. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Ganapathy, M.E., Huang, W., Wang, H., Ganapathy, V., Leibach, F.H. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  17. H+-peptide cotransport in the human bile duct epithelium cell line SK-ChA-1. Knütter, I., Rubio-Aliaga, I., Boll, M., Hause, G., Daniel, H., Neubert, K., Brandsch, M. Am. J. Physiol. Gastrointest. Liver Physiol. (2002) [Pubmed]
  18. The PDZ domain protein PDZK1 interacts with human peptide transporter PEPT2 and enhances its transport activity. Noshiro, R., Anzai, N., Sakata, T., Miyazaki, H., Terada, T., Shin, H.J., He, X., Miura, D., Inui, K., Kanai, Y., Endou, H. Kidney Int. (2006) [Pubmed]
  19. Preliminary investigation into the expression of proton-coupled oligopeptide transporters in neural retina and retinal pigment epithelium (RPE): lack of functional activity in RPE plasma membranes. Ocheltree, S.M., Keep, R.F., Shen, H., Yang, D., Hughes, B.A., Smith, D.E. Pharm. Res. (2003) [Pubmed]
  20. Expression and functional characteristics of tubular transporters: P-glycoprotein, PEPT1, and PEPT2 in renal mass reduction and diabetes. Tramonti, G., Xie, P., Wallner, E.I., Danesh, F.R., Kanwar, Y.S. Am. J. Physiol. Renal Physiol. (2006) [Pubmed]
  21. Genetic variant Arg57His in human H+/peptide cotransporter 2 causes a complete loss of transport function. Terada, T., Irie, M., Okuda, M., Inui, K. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  22. Comparison of human and monkey peptide transporters: PEPT1 and PEPT2. Zhang, E.Y., Emerick, R.M., Pak, Y.A., Wrighton, S.A., Hillgren, K.M. Mol. Pharm. (2004) [Pubmed]
  23. Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney. Liu, W., Liang, R., Ramamoorthy, S., Fei, Y.J., Ganapathy, M.E., Hediger, M.A., Ganapathy, V., Leibach, F.H. Biochim. Biophys. Acta (1995) [Pubmed]
  24. Tissue distribution and thyroid hormone regulation of Pept1 and Pept2 mRNA in rodents. Lu, H., Klaassen, C. Peptides (2006) [Pubmed]
 
WikiGenes - Universities