The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

dut  -  deoxyuridine 5'-triphosphate...

Escherichia coli O157:H7 str. Sakai

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ECs4515


High impact information on ECs4515


Chemical compound and disease context of ECs4515


Biological context of ECs4515

  • The DNA sequence predicts a polypeptide chain of 150 amino acid residues (mol. wt. 16 006) corresponding in size and composition to the purified dUTPase subunit [4].
  • Oligonucleotide and Zn2+ binding is well retained in the fusion protein, which is the first example of acquisition of a functional nucleic acid binding module by the DNA repair factor dUTPase [3].
  • The putative dUTPase domain was deleted from the polymerase (pol) gene of equine infectious anemia virus (EIAV) to produce a recombinant delta DUpol Escherichia coli expression cassette and a delta DU proviral clone [12].
  • The IL-3A dUTPase differs from the PBCV-1 enzyme by nine amino acids, including two amino acid substitutions, Glu81-->Ser81 and Thr84-->Arg84, in the highly conserved motif III of the proteins [13].
  • Our results suggest that virus-encoded dUTPase is dispensable for virus replication in dividing cells in vitro but may be required for efficient replication of EIAV in nondividing equine macrophages, the natural host cells for this virus [12].

Anatomical context of ECs4515


Associations of ECs4515 with chemical compounds

  • A decrease in dUTPase as a consequence of a sof or dut mutation may result in the increased incorporation of uracil into DNA [7].
  • This series of reactions requires the actions of T4-coded ribonucleoside diphosphate reductase and its associated reducing system, dCTP/dUTPase and dCMP hydroxymethylase, 3H being lost to water at the last step [17].
  • By the sequential action of dCTP deaminase and dUTPase, dCTP is converted to dUMP, the precursor of thymidine nucleotides [18].
  • By direct assay and by unidimensional and two-dimensional acrylamide electrophoretic separations the following T4-coded enzymes were shown to be associated with the complex: ribonucleoside diphosphate reductase, dCMP deaminase, dCTP/dUTPase, dCMP hydroxymethylase, dTMP synthetase, and DNA polymerase [17].
  • The recombinant protein has dUTPase activity and requires Mg(2+) for optimal activity, while it retains some activity in the presence of other divalent cations [13].

Other interactions of ECs4515

  • Its identity is unknown but it may represent a precursor of dUTPase or the product of a separate gene located between dut and pyrE [19].
  • The enzyme is a third member of the family of the structurally related trimeric dUTPases and the bifunctional dCTP deaminase-dUTPase from Methanocaldococcus jannaschii [20].

Analytical, diagnostic and therapeutic context of ECs4515

  • Through the molecular cloning of DNA, cells were obtained that could produce a 300-fold increased level of deoxyuridine triphosphatase (dUTPase) [21].
  • As a consequence of Tyr-93 derivatization, the Mg2+-dependent interaction between the substrate-analogue dUDP and E. coli dUTPase becomes impaired as shown by circular dichroism spectroscopy, here presented as a tool for monitoring ligand binding to the active site [10].
  • We observed that the thermostable His(6)-tagged Pwo dUTPase used for the polymerase chain reaction with P. woesei DNA polymerase improves the efficiency of PCR and it allows for amplification of longer targets [22].


  1. Crystal structure of a dUTPase. Cedergren-Zeppezauer, E.S., Larsson, G., Nyman, P.O., Dauter, Z., Wilson, K.S. Nature (1992) [Pubmed]
  2. The properties of a bacteriophage T5 mutant unable to induce deoxyuridine 5'-triphosphate nucleotidohydrolase. Synthesis of uracil-containing T5 deoxyribonucleic acid. Warner, H.R., Thompson, R.B., Mozer, T.J., Duncan, B.K. J. Biol. Chem. (1979) [Pubmed]
  3. dUTPase and nucleocapsid polypeptides of the Mason-Pfizer monkey virus form a fusion protein in the virion with homotrimeric organization and low catalytic efficiency. Barabás, O., Rumlová, M., Erdei, A., Pongrácz, V., Pichová, I., Vértessy, B.G. J. Biol. Chem. (2003) [Pubmed]
  4. Nucleotide sequence of the structural gene for dUTPase of Escherichia coli K-12. Lundberg, L.G., Thoresson, H.O., Karlström, O.H., Nyman, P.O. EMBO J. (1983) [Pubmed]
  5. Catalytic and structural role of the metal ion in dUTP pyrophosphatase. Mustafi, D., Bekesi, A., Vertessy, B.G., Makinen, M.W. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  6. In vitro synthesis of bacteriophage phi X174 by purified components. Aoyama, A., Hamatake, R.K., Hayashi, M. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  7. Transient accumulation of Okazaki fragments as a result of uracil incorporation into nascent DNA. Tye, B.K., Nyman, P.O., Lehman, I.R., Hochhauser, S., Weiss, B. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  8. Expression and purification of the mouse mammary tumor virus gag-pro transframe protein p30 and characterization of its dUTPase activity. Köppe, B., Menéndez-Arias, L., Oroszlan, S. J. Virol. (1994) [Pubmed]
  9. The complete triphosphate moiety of non-hydrolyzable substrate analogues is required for a conformational shift of the flexible C-terminus in E. coli dUTP pyrophosphatase. Vertessy, B.G., Larsson, G., Persson, T., Bergman, A.C., Persson, R., Nyman, P.O. FEBS Lett. (1998) [Pubmed]
  10. Specific derivatization of the active site tyrosine in dUTPase perturbs ligand binding to the active site. Vertessy, B.G., Persson, R., Rosengren, A.M., Zeppezauer, M., Nyman, P.O. Biochem. Biophys. Res. Commun. (1996) [Pubmed]
  11. Lack of dependence of 5-fluorodeoxyuridine-mediated radiosensitization on cytotoxicity. Lawrence, T.S., Davis, M.A., Chang, E.Y., Canman, C.E., Maybaum, J., Radany, E.H. Radiat. Res. (1995) [Pubmed]
  12. Characterization of equine infectious anemia virus dUTPase: growth properties of a dUTPase-deficient mutant. Threadgill, D.S., Steagall, W.K., Flaherty, M.T., Fuller, F.J., Perry, S.T., Rushlow, K.E., Le Grice, S.F., Payne, S.L. J. Virol. (1993) [Pubmed]
  13. Chlorella virus-encoded deoxyuridine triphosphatases exhibit different temperature optima. Zhang, Y., Moriyama, H., Homma, K., Van Etten, J.L. J. Virol. (2005) [Pubmed]
  14. Restoration of the biological activity of in vitro synthesized phi X DNA by transfection of ung- spheroplasts or dUTPase treatment. Baas, P.D., van Teeffelen, H.A., Teertstra, W.R., Jansz, H.S., Veeneman, G.H., van der Marel, G.A., van Boom, J.H. FEBS Lett. (1980) [Pubmed]
  15. Mechanism and pharmacological specificity of dUTPase-mediated protection from DNA damage and cytotoxicity in human tumor cells. Parsels, L.A., Parsels, J.D., Wagner, L.M., Loney, T.L., Radany, E.H., Maybaum, J. Cancer Chemother. Pharmacol. (1998) [Pubmed]
  16. dUTPase from herpes simplex virus type 1; purification from infected green monkey kidney (Vero) cells and from an overproducing Escherichia coli strain. Björnberg, O., Bergman, A.C., Rosengren, A.M., Persson, R., Lehman, I.R., Nyman, P.O. Protein Expr. Purif. (1993) [Pubmed]
  17. Characteristics of a bacteriophage T4-induced complex synthesizing deoxyribonucleotides. Chiu, C.S., Cook, K.S., Greenberg, G.R. J. Biol. Chem. (1982) [Pubmed]
  18. A bifunctional dCTP deaminase-dUTP nucleotidohydrolase from the hyperthermophilic archaeon Methanocaldococcus jannaschii. Björnberg, O., Neuhard, J., Nyman, P.O. J. Biol. Chem. (2003) [Pubmed]
  19. Isolation and characterization of the dut gene of Escherichia coli. II. Restriction enzyme mapping and analysis of polypeptide products. Lundberg, L.G., Karlström, O.H., Nyman, P.O. Gene (1983) [Pubmed]
  20. Structures of dCTP deaminase from Escherichia coli with bound substrate and product: reaction mechanism and determinants of mono- and bifunctionality for a family of enzymes. Johansson, E., Fanø, M., Bynck, J.H., Neuhard, J., Larsen, S., Sigurskjold, B.W., Christensen, U., Willemoës, M. J. Biol. Chem. (2005) [Pubmed]
  21. Cloning of the dut (deoxyuridine triphosphatase) gene of Escherichia coli. Taylor, A.F., Siliciano, P.G., Weiss, B. Gene (1980) [Pubmed]
  22. Cloning, expression, and purification of the His6-tagged hyper-thermostable dUTPase from Pyrococcus woesei in Escherichia coli: application in PCR. Dabrowski, S., Kiaer Ahring, B. Protein Expr. Purif. (2003) [Pubmed]
WikiGenes - Universities