The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Pyochelin     (4S)-3-methyl-2-[(2E,4R)-2- (6-oxo-1...

Synonyms: Pyochelins, AC1NUWEK, Chelins, pyo, CHEBI:29669, C12037, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pyochelin

  • Since Pseudomonas aeruginosa infections are associated with considerable tissue destruction, we examined whether iron bound to the Pseudomonas siderophores pyochelin (PCH) and pyoverdin (PVD) could act as .OH catalysts [1].
  • Pyochelin (Pch) is a siderophore that is produced in iron-limited conditions, by both Pseudomonas aeruginosa and Burkholderia cepacia [2].
  • Pyochelin formation was also obtained in the heterologous host Escherichia coli expressing pchDCBA and pchEFG together with the E. coli entD gene, which provides a phosphopantetheinyl transferase necessary for PchE and PchF activation [3].
  • Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively [4].
  • Pyochelin production by P. cepacia isolates infecting cystic fibrosis patients correlates with morbidity and mortality in these patients [5].

High impact information on Pyochelin


Chemical compound and disease context of Pyochelin


Biological context of Pyochelin

  • We have identified a 32 bp conserved sequence element (PchR-box) in promoter regions of pyochelin-controlled genes and we show that the PchR-box in the pchR-pchDCBA intergenic region is essential for the induction of the pyochelin biosynthetic operon pchDCBA and the repression of the divergently transcribed pchR gene [14].
  • In a P. aeruginosa mutant lacking the entire pyochelin biosynthetic gene cluster, the expressed pchDCBA and pchEFG genes were sufficient for salicylate, Dha, and pyochelin production [3].
  • As was expected, the expression of fptA decreased dramatically following the inactivation of pchR by the insertion of an OmegaHg cartridge, although the effect (> 10-fold) was not as dramatic as that of pyochelin deficiency, which obviated fptA gene expression [15].
  • In agreement with this, a PchR mutant obtained by in vitro mutagenesis and gene replacement was deficient in production of the ferripyochelin receptor and pyochelin [16].
  • PA4218 was mutated by allelic replacement, and the mutant was found to have a pyochelin utilization-defective phenotype [4].

Anatomical context of Pyochelin

  • When the siderophores were incubated with K562 cells alone, malleobactin was less efficient at removing iron from cells than pyochelin and azurechelin [17].
  • Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin [18].
  • When the siderophores were tested individually, pyoverdin was more effective than pyochelin in mobilizing iron across dialysis membranes at pH values of 5.0 and 6.0, but neither had appreciable activity at pH 7 [19].
  • A fresh isolate of Ps. aeruginosa elaborating virulence factors like elastase, protease, phospholipase C, pyochelin and haemolysin was selected and introduced transuretherally in mice without any manipulation of the urinary tract [20].
  • Planktonic and biofilm cells of a clinical urinary isolate of P. aeruginosa were compared in vitro for their ability to adhere to uroepithelial cells, interaction with macrophages, and for production of virulence factors like extracellular proteinase, elastase, hemolysin, phospholipase C and pyochelin [21].

Associations of Pyochelin with other chemical compounds


Gene context of Pyochelin

  • Addition of malleobactin resulted in iron uptake only from transferrin, whereas pyochelin and azurechelin promoted iron uptake from both sources [17].
  • Isochorismate pyruvate-lyase (IPL), the second enzyme of pyochelin biosynthesis and the product of the pchB gene, was purified to homogeneity from Pseudomonas aeruginosa [26].
  • One of them is a well-characterized virulence gene (fptA), encoding the receptor for pyochelin, which is a P. aeruginosa iron siderophore [27].
  • In vivo, this analog strongly interfered with Dha and pyochelin formation in a pchC deletion mutant but affected production of these metabolites only slightly in the wild type [12].
  • Transcription of pchD started at tandemly arranged promoters, which overlapped with two Fur boxes (binding sites for the ferric uptake regulator) and the promoter of the divergently transcribed pchR gene encoding an activator of pyochelin biosynthesis [28].

Analytical, diagnostic and therapeutic context of Pyochelin


  1. Possible role of bacterial siderophores in inflammation. Iron bound to the Pseudomonas siderophore pyochelin can function as a hydroxyl radical catalyst. Coffman, T.J., Cox, C.D., Edeker, B.L., Britigan, B.E. J. Clin. Invest. (1990) [Pubmed]
  2. Binding properties of pyochelin and structurally related molecules to FptA of Pseudomonas aeruginosa. Mislin, G.L., Hoegy, F., Cobessi, D., Poole, K., Rognan, D., Schalk, I.J. J. Mol. Biol. (2006) [Pubmed]
  3. Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. Reimmann, C., Patel, H.M., Serino, L., Barone, M., Walsh, C.T., Haas, D. J. Bacteriol. (2001) [Pubmed]
  4. Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively. Cuív, P.O., Clarke, P., Lynch, D., O'Connell, M. J. Bacteriol. (2004) [Pubmed]
  5. Production and utilization of pyochelin by clinical isolates of Pseudomonas cepacia. Sokol, P.A. J. Clin. Microbiol. (1986) [Pubmed]
  6. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. Britigan, B.E., Roeder, T.L., Rasmussen, G.T., Shasby, D.M., McCormick, M.L., Cox, C.D. J. Clin. Invest. (1992) [Pubmed]
  7. Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Wang, J., Mushegian, A., Lory, S., Jin, S. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  8. Binding of iron-free siderophore, a common feature of siderophore outer membrane transporters of Escherichia coli and Pseudomonas aeruginosa. Hoegy, F., Celia, H., Mislin, G.L., Vincent, M., Gallay, J., Schalk, I.J. J. Biol. Chem. (2005) [Pubmed]
  9. Isochorismate synthase (PchA), the first and rate-limiting enzyme in salicylate biosynthesis of Pseudomonas aeruginosa. Gaille, C., Reimmann, C., Haas, D. J. Biol. Chem. (2003) [Pubmed]
  10. Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Visser, M.B., Majumdar, S., Hani, E., Sokol, P.A. Infect. Immun. (2004) [Pubmed]
  11. Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Visca, P., Colotti, G., Serino, L., Verzili, D., Orsi, N., Chiancone, E. Appl. Environ. Microbiol. (1992) [Pubmed]
  12. PchC thioesterase optimizes nonribosomal biosynthesis of the peptide siderophore pyochelin in Pseudomonas aeruginosa. Reimmann, C., Patel, H.M., Walsh, C.T., Haas, D. J. Bacteriol. (2004) [Pubmed]
  13. Mechanism of augmentation of organotin decomposition by ferripyochelin: formation of hydroxyl radical and organotin-pyochelin-iron ternary complex. Sun, G.X., Zhong, J.J. Appl. Environ. Microbiol. (2006) [Pubmed]
  14. PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Michel, L., González, N., Jagdeep, S., Nguyen-Ngoc, T., Reimmann, C. Mol. Microbiol. (2005) [Pubmed]
  15. PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa, functions both as an activator and as a repressor. Heinrichs, D.E., Poole, K. J. Bacteriol. (1996) [Pubmed]
  16. Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. Heinrichs, D.E., Poole, K. J. Bacteriol. (1993) [Pubmed]
  17. Ability of Pseudomonas pseudomallei malleobactin to acquire transferrin-bound, lactoferrin-bound, and cell-derived iron. Yang, H., Kooi, C.D., Sokol, P.A. Infect. Immun. (1993) [Pubmed]
  18. Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin. Britigan, B.E., Rasmussen, G.T., Cox, C.D. Infect. Immun. (1997) [Pubmed]
  19. Siderophore-mediated iron acquisition from transferrin by Pseudomonas aeruginosa. Sriyosachati, S., Cox, C.D. Infect. Immun. (1986) [Pubmed]
  20. Pyelonephritic potential of Pseudomonas aeruginosa in ascending mouse model. Yadav, V., Harjai, K., Joshi, K., Sharma, S. Indian J. Med. Res. (2000) [Pubmed]
  21. Urovirulence of Pseudomonas aeruginosa: planktonic cells vs. biofilm cells. Yadav, V., Harjai, K., Kaur, R., Joshi, K., Sharma, S. Folia Microbiol. (Praha) (2004) [Pubmed]
  22. Carrier protein recognition in siderophore-producing nonribosomal peptide synthetases. Marshall, C.G., Burkart, M.D., Meray, R.K., Walsh, C.T. Biochemistry (2002) [Pubmed]
  23. Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa. Ankenbauer, R.G., Toyokuni, T., Staley, A., Rinehart, K.L., Cox, C.D. J. Bacteriol. (1988) [Pubmed]
  24. Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. Hassett, D.J., Sokol, P.A., Howell, M.L., Ma, J.F., Schweizer, H.T., Ochsner, U., Vasil, M.L. J. Bacteriol. (1996) [Pubmed]
  25. Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. Youard, Z.A., Mislin, G.L., Majcherczyk, P.A., Schalk, I.J., Reimmann, C. J. Biol. Chem. (2007) [Pubmed]
  26. Salicylate biosynthesis in Pseudomonas aeruginosa. Purification and characterization of PchB, a novel bifunctional enzyme displaying isochorismate pyruvate-lyase and chorismate mutase activities. Gaille, C., Kast, P., Haas, D. J. Biol. Chem. (2002) [Pubmed]
  27. Isolation and characterization of Pseudomonas aeruginosa genes inducible by respiratory mucus derived from cystic fibrosis patients. Wang, J., Lory, S., Ramphal, R., Jin, S. Mol. Microbiol. (1996) [Pubmed]
  28. Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. Serino, L., Reimmann, C., Visca, P., Beyeler, M., Chiesa, V.D., Haas, D. J. Bacteriol. (1997) [Pubmed]
  29. Mutasynthesis of siderophore analogues by Pseudomonas aeruginosa. Ankenbauer, R.G., Staley, A.L., Rinehart, K.L., Cox, C.D. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  30. Crystallization and X-ray diffraction analyses of the outer membrane pyochelin receptor FptA from Pseudomonas aeruginosa. Cobessi, D., Célia, H., Pattus, F. Acta Crystallogr. D Biol. Crystallogr. (2004) [Pubmed]
  31. Different iron-chelating properties of pyochelin diastereoisomers revealed by LC/MS. Hayen, H., Volmer, D.A. Analytical and bioanalytical chemistry. (2006) [Pubmed]
WikiGenes - Universities