The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Microbial Viability

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Microbial Viability


High impact information on Microbial Viability

  • The 3'-untranslated region harbors a tRNA-like structure (TLS) to which a valine moiety can be added and it is indispensable for virus viability [6].
  • Uptake of H. pylori was inhibited by ammonium chloride and chloroquine at concentrations that did not effect either adherence or bacterial viability [7].
  • Stem-loop IV RNA containing a three nucleotide insertion that abrogates translation activity and virus viability was unable to bind PCBP2 [8].
  • Biochemical analysis of 3Dpol derivatives containing the thumb or palm substitutions revealed that these derivatives are both incapable of forming long fibers, suggesting that polymerase fibers are not essential for virus viability [9].
  • The possibility that this region of the protein may be sufficient for virus viability is discussed in relation to the sequences of NS1 genes of field isolates and to the phenotype of known viral mutants affected in the NS1 gene [10].

Chemical compound and disease context of Microbial Viability


Biological context of Microbial Viability


Anatomical context of Microbial Viability

  • The effector protein EspF, while critical for disruption of epithelial barrier function through alteration of tight junctions, is not required for bacterial viability or attachment [17].
  • RESULTS--Homogenisation of sputum using dithiothreitol increased the recovery of viable bacteria compared with sterile glass beads and/or saline, with no apparent effect on bacterial viability when incubated with culture broths [18].
  • There was however no significant enhancement of intracellular BCG growth, over a 7-day incubation, in human monocyte-derived macrophages in the presence of any of the TNF-alpha-blocking agents, as determined by both radiometric and CFU counting methods of assessing bacterial viability and growth [19].

Associations of Microbial Viability with chemical compounds


Gene context of Microbial Viability


Analytical, diagnostic and therapeutic context of Microbial Viability


  1. Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Martínez, M.A., Verdaguer, N., Mateu, M.G., Domingo, E. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  2. An Agrobacterium catalase is a virulence factor involved in tumorigenesis. Xu, X.Q., Pan, S.Q. Mol. Microbiol. (2000) [Pubmed]
  3. Myeloperoxidase-mediated inhibition of microbial respiration: damage to Escherichia coli ubiquinol oxidase. Rakita, R.M., Michel, B.R., Rosen, H. Biochemistry (1989) [Pubmed]
  4. A 40 kDa isoform of the type 5 adenovirus IVa2 protein is sufficient for virus viability. Pardo-Mateos, A., Young, C.S. Virology (2004) [Pubmed]
  5. Myxoma virus and Shope fibroma virus encode dual-specificity tyrosine/serine phosphatases which are essential for virus viability. Mossman, K., Ostergaard, H., Upton, C., McFadden, G. Virology (1995) [Pubmed]
  6. Entrapping ribosomes for viral translation: tRNA mimicry as a molecular Trojan horse. Barends, S., Bink, H.H., van den Worm, S.H., Pleij, C.W., Kraal, B. Cell (2003) [Pubmed]
  7. Adherence and internalization of Helicobacter pylori by HEp-2 cells. Evans, D.G., Evans, D.J., Graham, D.Y. Gastroenterology (1992) [Pubmed]
  8. Poly(rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5' noncoding region: identification by automated liquid chromatography-tandem mass spectrometry. Blyn, L.B., Swiderek, K.M., Richards, O., Stahl, D.C., Semler, B.L., Ehrenfeld, E. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  9. Structure-function relationships of the RNA-dependent RNA polymerase from poliovirus (3Dpol). A surface of the primary oligomerization domain functions in capsid precursor processing and VPg uridylylation. Pathak, H.B., Ghosh, S.K., Roberts, A.W., Sharma, S.D., Yoder, J.D., Arnold, J.J., Gohara, D.W., Barton, D.J., Paul, A.V., Cameron, C.E. J. Biol. Chem. (2002) [Pubmed]
  10. The N-terminal half of the influenza virus NS1 protein is sufficient for nuclear retention of mRNA and enhancement of viral mRNA translation. Marión, R.M., Aragón, T., Beloso, A., Nieto, A., Ortín, J. Nucleic Acids Res. (1997) [Pubmed]
  11. The effect of Theiler's murine encephalomyelitis virus (TMEV) VP1 carboxyl region on the virus-induced central nervous system disease. Senkowski, A., Shim, B., Roos, R.P. J. Neurovirol. (1995) [Pubmed]
  12. Membrane damage and enzyme inactivation of Lactobacillus plantarum by high pressure CO2 treatment. Hon, S.I., Pyun, Y.R. Int. J. Food Microbiol. (2001) [Pubmed]
  13. In vitro studies of the effect of antiseptic-containing mouthwashes on the formation and viability of Streptococcus sanguis biofilms. Pratten, J., Wills, K., Barnett, P., Wilson, M. J. Appl. Microbiol. (1998) [Pubmed]
  14. An in vitro study on the active conversion of flucytosine to fluorouracil by microorganisms in the human intestinal microflora. Vermes, A., Kuijper, E.J., Guchelaar, H.J., Dankert, J. Chemotherapy. (2003) [Pubmed]
  15. The paramyxovirus SV5 small hydrophobic (SH) protein is not essential for virus growth in tissue culture cells. He, B., Leser, G.P., Paterson, R.G., Lamb, R.A. Virology (1998) [Pubmed]
  16. Membrane hyperpolarisation by valinomycin and its limitations for bacterial viability assessment using rhodamine 123 and flow cytometry. Porter, J., Pickup, R., Edwards, C. FEMS Microbiol. Lett. (1995) [Pubmed]
  17. Cytokeratin 18 interacts with the enteropathogenic Escherichia coli secreted protein F (EspF) and is redistributed after infection. Viswanathan, V.K., Lukic, S., Koutsouris, A., Miao, R., Muza, M.M., Hecht, G. Cell. Microbiol. (2004) [Pubmed]
  18. Simple method for quantifying viable bacterial numbers in sputum. Pye, A., Stockley, R.A., Hill, S.L. J. Clin. Pathol. (1995) [Pubmed]
  19. Effect of blocking TNF-alpha on intracellular BCG (Bacillus Calmette Guerin) growth in human monocyte-derived macrophages. Fazal, N., Lammas, D.A., Raykundalia, C., Bartlett, R., Kumararatne, D.S. FEMS microbiology immunology. (1992) [Pubmed]
  20. Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: an in vivo model. Rediske, A.M., Roeder, B.L., Brown, M.K., Nelson, J.L., Robison, R.L., Draper, D.O., Schaalje, G.B., Robison, R.A., Pitt, W.G. Antimicrob. Agents Chemother. (1999) [Pubmed]
  21. Parameters that influence the efficiency of processing antigenic epitopes expressed in Salmonella typhimurium. Wick, M.J., Harding, C.V., Normark, S.J., Pfeifer, J.D. Infect. Immun. (1994) [Pubmed]
  22. Intracellular activity of azithromycin against bacterial enteric pathogens. Rakita, R.M., Jacques-Palaz, K., Murray, B.E. Antimicrob. Agents Chemother. (1994) [Pubmed]
  23. Expression of attaching/effacing activity by enteropathogenic Escherichia coli depends on growth phase, temperature, and protein synthesis upon contact with epithelial cells. Rosenshine, I., Ruschkowski, S., Finlay, B.B. Infect. Immun. (1996) [Pubmed]
  24. Reversible inactivation of bladder surface glycosaminoglycan antibacterial activity by protamine sulfate. Parsons, C.L., Stauffer, C.W., Schmidt, J.D. Infect. Immun. (1988) [Pubmed]
  25. Increased RNA editing and inhibition of hepatitis delta virus replication by high-level expression of ADAR1 and ADAR2. Jayan, G.C., Casey, J.L. J. Virol. (2002) [Pubmed]
  26. Sequence and transcriptional pattern of the essential Escherichia coli secE-nusG operon. Downing, W.L., Sullivan, S.L., Gottesman, M.E., Dennis, P.P. J. Bacteriol. (1990) [Pubmed]
  27. Mutational analysis and properties of the msbA gene of Escherichia coli, coding for an essential ABC family transporter. Polissi, A., Georgopoulos, C. Mol. Microbiol. (1996) [Pubmed]
  28. Furin-mediated cleavage of the feline foamy virus Env leader protein. Geiselhart, V., Bastone, P., Kempf, T., Schnölzer, M., Löchelt, M. J. Virol. (2004) [Pubmed]
  29. Isolation and characterization of the Escherichia coli htrB gene, whose product is essential for bacterial viability above 33 degrees C in rich media. Karow, M., Fayet, O., Cegielska, A., Ziegelhoffer, T., Georgopoulos, C. J. Bacteriol. (1991) [Pubmed]
  30. Use of HT-29, a cultured human colon cancer cell line, to study the effect of fermented milks on colon cancer cell growth and differentiation. Baricault, L., Denariaz, G., Houri, J.J., Bouley, C., Sapin, C., Trugnan, G. Carcinogenesis (1995) [Pubmed]
  31. Effect of extracorporeal shock wave lithotripsy on bacterial viability. Relationship to the treatment of struvite stones. Reid, G., Jewett, M.A., Nickel, J.C., McLean, R.J., Bruce, A.W. Urol. Res. (1990) [Pubmed]
  32. Simultaneous determination of bacterial viability and identity in biofilms using ethidium monoazide and fluorescent in situ hybridization. Regan, J.M., Oldenburg, P.S., Park, H.D., Harrington, G.W., Noguera, D.R. Water Sci. Technol. (2003) [Pubmed]
WikiGenes - Universities