The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Hyperparathyroidism

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hyperparathyroidism

 

High impact information on Hyperparathyroidism

 

Chemical compound and disease context of Hyperparathyroidism

  • In Nx rats on a MPD, serum calcitriol levels decreased only if hyperparathyroidism was not allowed to occur (76 +/- 4 vs. 62 +/- 4 pg/ml in Nx-IPTG-MPD and Nx-PTHR-MPD groups respectively, P < 0.05) [10].
  • In the two other groups that also received a vitamin D-deficient diet, the hypocalcemia and the hyperparathyroidism were later corrected, by either vitamin D supplementation (D-D+) or lactose and high calcium diet (D-Ca+), 1 week before death [11].
  • In summary, NA rats, which are analbuminemic with compensatory increases in lipid and protein synthesis, developed hyperparathyroidism, possibly due to an increase in serum Pi and a reduction of ionized Ca, and ovx induced a greater BMD reduction in NA rats than in SD rats, probably by exacerbating hyperparathyroidism [12].
  • Ovx-induced exacerbation of hyperparathyroidism was confirmed by significantly greater conversion of 25-hydroxyvitamin D to 1, 25-dihydroxyvitamin D in ovx NA rats even after normalization to vitamin D-binding protein [12].
  • This may indicate that hypertension due to nutritional hyperparathyroidism responds to the calcium antagonist nifedipine and calcium supplementation, and is not dependent on renin [13].
 

Biological context of Hyperparathyroidism

 

Anatomical context of Hyperparathyroidism

  • The present study was undertaken to investigate the effect of the Hyp mutation and diet-induced hyperparathyroidism on renal responsiveness to PTH and forskolin and to determine whether the renal brush border membrane phosphate transport defect is expressed in the vitamin D- and calcium-deficient Hyp mouse [16].
  • Despite aluminium administration, diet-induced hyperparathyroidism resulted in an increase (P < 0.05) in the osteoblast surface [17].
  • Indeed, this action of parathyroid hormone (PTH) has only been observed in acute studies, whereas in animal models of chronic hyperparathyroidism a metabolic alkalosis has been induced, probably owing to the release of alkaline salts from bone tissue, and to the stimulation of tubular acid secretion by hypercalcaemia [18].
 

Gene context of Hyperparathyroidism

 

Analytical, diagnostic and therapeutic context of Hyperparathyroidism

References

  1. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Pollak, M.R., Brown, E.M., Chou, Y.H., Hebert, S.C., Marx, S.J., Steinmann, B., Levi, T., Seidman, C.E., Seidman, J.G. Cell (1993) [Pubmed]
  2. Hypotensive action of parathyroid hormone in hypoparathyroid and hyperparathyroid rats. Baksi, S.N. Hypertension (1988) [Pubmed]
  3. Mutation analysis of the MEN1 gene in multiple endocrine neoplasia type 1, familial acromegaly and familial isolated hyperparathyroidism. Teh, B.T., Kytölä, S., Farnebo, F., Bergman, L., Wong, F.K., Weber, G., Hayward, N., Larsson, C., Skogseid, B., Beckers, A., Phelan, C., Edwards, M., Epstein, M., Alford, F., Hurley, D., Grimmond, S., Silins, G., Walters, M., Stewart, C., Cardinal, J., Khodaei, S., Parente, F., Tranebjaerg, L., Jorde, R., Salmela, P. J. Clin. Endocrinol. Metab. (1998) [Pubmed]
  4. Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Li, Y.C., Amling, M., Pirro, A.E., Priemel, M., Meuse, J., Baron, R., Delling, G., Demay, M.B. Endocrinology (1998) [Pubmed]
  5. Chronic renal failure, parathyroid hormone and fatty acids oxidation in skeletal muscle. Smogorzewski, M., Piskorska, G., Borum, P.R., Massry, S.G. Kidney Int. (1988) [Pubmed]
  6. Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. Tu, Q., Pi, M., Karsenty, G., Simpson, L., Liu, S., Quarles, L.D. J. Clin. Invest. (2003) [Pubmed]
  7. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. Kos, C.H., Karaplis, A.C., Peng, J.B., Hediger, M.A., Goltzman, D., Mohammad, K.S., Guise, T.A., Pollak, M.R. J. Clin. Invest. (2003) [Pubmed]
  8. Effects of dietary-induced hyperparathyroidism on the parathyroid hormone-receptor-adenylate cyclase system of canine kidney. Evidence for postreceptor mechanism of desensitization. Tamayo, J., Bellorin-Font, E., Martin, K.J. J. Clin. Invest. (1983) [Pubmed]
  9. Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Li, Y.C., Pirro, A.E., Amling, M., Delling, G., Baron, R., Bronson, R., Demay, M.B. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  10. Relative effects of PTH and dietary phosphorus on calcitriol production in normal and azotemic rats. Tallon, S., Berdud, I., Hernandez, A., Concepcion, M.T., Almaden, Y., Torres, A., Martin-Malo, A., Felsenfeld, A.J., Aljama, P., Rodriguez, M. Kidney Int. (1996) [Pubmed]
  11. Parathyroid hormone (PTH)/PTH-related protein receptor messenger ribonucleic acid expression and PTH response in a rat model of secondary hyperparathyroidism associated with vitamin D deficiency. Turner, G., Coureau, C., Rabin, M.R., Escoubet, B., Hruby, M., Walrant, O., Silve, C. Endocrinology (1995) [Pubmed]
  12. Hyperparathyroidism is augmented by ovariectomy in Nagase analbuminemic rats. Inaba, M., Morii, H., Katsumata, T., Goto, H., Ishimura, E., Kawagishi, T., Kamao, M., Okano, T., Nishizawa, Y. J. Nutr. (2000) [Pubmed]
  13. Elevation of blood pressure in young rats fed a low calcium diet. Effects of nifedipine and captopril. Togari, A., Arai, M., Shamoto, T., Matsumoto, S., Nagatsu, T. Biochem. Pharmacol. (1989) [Pubmed]
  14. Canine renal receptors for parathyroid hormone. Down-regulation in vivo by exogenous parathyroid hormone. Mahoney, C.A., Nissenson, R.A. J. Clin. Invest. (1983) [Pubmed]
  15. Endothelin receptor antagonist prevents parathyroid cell proliferation of low calcium diet-induced hyperparathyroidism in rats. Kanesaka, Y., Tokunaga, H., Iwashita, K., Fujimura, S., Naomi, S., Tomita, K. Endocrinology (2001) [Pubmed]
  16. Effect of the Hyp mutation and diet-induced hyperparathyroidism on renal parathyroid hormone- and forskolin-stimulated adenosine 3',5'-monophosphate production and brush border membrane phosphate transport. Tenenhouse, H.S., Veksler, A. Endocrinology (1986) [Pubmed]
  17. Effect of aluminium on the development of hyperparathyroidism and bone disease in the azotaemic rat. Felsenfeld, A.J., Machado, L., Bover, J., Trinidad, P., Rodriguez, M. Nephrol. Dial. Transplant. (1993) [Pubmed]
  18. Parathyroid hormone directly inhibits tubular reabsorption of bicarbonate in normocalcaemic rats with chronic hyperparathyroidism. Jaeger, P., Jones, W., Kashgarian, M., Segre, G.V., Hayslett, J.P. Eur. J. Clin. Invest. (1987) [Pubmed]
  19. Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Yu, X., Sabbagh, Y., Davis, S.I., Demay, M.B., White, K.E. Bone (2005) [Pubmed]
  20. Neonatal severe hyperparathyroidism, secondary hyperparathyroidism, and familial hypocalciuric hypercalcemia: multiple different phenotypes associated with an inactivating Alu insertion mutation of the calcium-sensing receptor gene. Cole, D.E., Janicic, N., Salisbury, S.R., Hendy, G.N. Am. J. Med. Genet. (1997) [Pubmed]
  21. A novel mutation of the MEN1 gene in a Japanese kindred with familial isolated primary hyperparathyroidism. Honda, M., Tsukada, T., Tanaka, H., Maruyama, K., Yamaguchi, K., Obara, T., Yamaji, T., Ishibashi, M. Eur. J. Endocrinol. (2000) [Pubmed]
  22. Parathyroid gland-specific deletion of the mouse Men1 gene results in parathyroid neoplasia and hypercalcemic hyperparathyroidism. Libutti, S.K., Crabtree, J.S., Lorang, D., Burns, A.L., Mazzanti, C., Hewitt, S.M., O'Connor, S., Ward, J.M., Emmert-Buck, M.R., Remaley, A., Miller, M., Turner, E., Alexander, H.R., Arnold, A., Marx, S.J., Collins, F.S., Spiegel, A.M. Cancer Res. (2003) [Pubmed]
  23. Genetic testing in familial isolated hyperparathyroidism: unexpected results and their implications. Warner, J., Epstein, M., Sweet, A., Singh, D., Burgess, J., Stranks, S., Hill, P., Perry-Keene, D., Learoyd, D., Robinson, B., Birdsey, P., Mackenzie, E., Teh, B.T., Prins, J.B., Cardinal, J. J. Med. Genet. (2004) [Pubmed]
  24. Total Parathyroidectomy Without Autotransplantation for Renal Hyperparathyroidism: Experience with a qPTH-controlled Protocol. Lorenz, K., Ukkat, J., Sekulla, C., Gimm, O., Brauckhoff, M., Dralle, H. World journal of surgery. (2006) [Pubmed]
  25. Enhanced ALA-induced fluorescence in hyperparathyroidism. Prosst, R.L., Schroeter, L., Gahlen, J. J. Photochem. Photobiol. B, Biol. (2005) [Pubmed]
  26. P-glycoprotein expression influences the result of 99mTc-MIBI scintigraphy in tertiary hyperparathyroidism. Chudzinski, W., Niderla, J., Lasiecka, Z., Wilczynski, G., Gornicka, B., Wasiutynski, A., Maczewska, J., Kobylecka, M., Krolicki, L., Durlik, M., Nowacka, E., Lazarczyk, M., Dziunycz, P., Milewski, L., Nawrot, I., Grzela, T. Int. J. Mol. Med. (2005) [Pubmed]
  27. The effect of altered bone metabolism on orthodontic tooth movement. Midgett, R.J., Shaye, R., Fruge, J.F. American journal of orthodontics. (1981) [Pubmed]
 
WikiGenes - Universities