The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

ple  -  perinatal lethality

Mus musculus

Synonyms: Tg.ple, Tgple
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ple


High impact information on ple


Chemical compound and disease context of ple


Biological context of ple


Anatomical context of ple


Associations of ple with chemical compounds

  • With the caveat that multi- ple melatonin treatments are required to induce phase shifts, the results suggest that the circadian timing system controlling the rhythm of wheel-running activity in the C3H/HeN mouse is responsive to both light and melatonin [22].
  • Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality [23].
  • This genetic engineering strategy corrected most of the purine metabolic disturbances, prevented serious fetal liver damage, and rescued the fetuses from perinatal lethality [24].
  • Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (S1P) receptors, S1P(2)/LP(B2)/EDG-5 and S1P(3)/LP(B3)/EDG-3 [25].
  • Similar studies in vivo have been difficult due to the embryonic and perinatal lethality of null mutations in integrin subunits [26].

Physical interactions of ple


Other interactions of ple


  1. Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. Doyonnas, R., Kershaw, D.B., Duhme, C., Merkens, H., Chelliah, S., Graf, T., McNagny, K.M. J. Exp. Med. (2001) [Pubmed]
  2. Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. Tu, Q., Pi, M., Karsenty, G., Simpson, L., Liu, S., Quarles, L.D. J. Clin. Invest. (2003) [Pubmed]
  3. SOCS3: an essential regulator of LIF receptor signaling in trophoblast giant cell differentiation. Takahashi, Y., Carpino, N., Cross, J.C., Torres, M., Parganas, E., Ihle, J.N. EMBO J. (2003) [Pubmed]
  4. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Di Palma, F., Belyantseva, I.A., Kim, H.J., Vogt, T.F., Kachar, B., Noben-Trauth, K. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  5. A mutation in the F-box gene, Fbxo11, causes otitis media in the Jeff mouse. Hardisty-Hughes, R.E., Tateossian, H., Morse, S.A., Romero, M.R., Middleton, A., Tymowska-Lalanne, Z., Hunter, A.J., Cheeseman, M., Brown, S.D. Hum. Mol. Genet. (2006) [Pubmed]
  6. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Foo, S.S., Turner, C.J., Adams, S., Compagni, A., Aubyn, D., Kogata, N., Lindblom, P., Shani, M., Zicha, D., Adams, R.H. Cell (2006) [Pubmed]
  7. Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Hao, Z., Duncan, G.S., Chang, C.C., Elia, A., Fang, M., Wakeham, A., Okada, H., Calzascia, T., Jang, Y., You-Ten, A., Yeh, W.C., Ohashi, P., Wang, X., Mak, T.W. Cell (2005) [Pubmed]
  8. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Chen, W.Y., Zeng, X., Carter, M.G., Morrell, C.N., Chiu Yen, R.W., Esteller, M., Watkins, D.N., Herman, J.G., Mankowski, J.L., Baylin, S.B. Nat. Genet. (2003) [Pubmed]
  9. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. Fruman, D.A., Mauvais-Jarvis, F., Pollard, D.A., Yballe, C.M., Brazil, D., Bronson, R.T., Kahn, C.R., Cantley, L.C. Nat. Genet. (2000) [Pubmed]
  10. Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. White, J.K., Auerbach, W., Duyao, M.P., Vonsattel, J.P., Gusella, J.F., Joyner, A.L., MacDonald, M.E. Nat. Genet. (1997) [Pubmed]
  11. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Donoviel, D.B., Freed, D.D., Vogel, H., Potter, D.G., Hawkins, E., Barrish, J.P., Mathur, B.N., Turner, C.A., Geske, R., Montgomery, C.A., Starbuck, M., Brandt, M., Gupta, A., Ramirez-Solis, R., Zambrowicz, B.P., Powell, D.R. Mol. Cell. Biol. (2001) [Pubmed]
  12. Disruption of integrin function in the murine myocardium leads to perinatal lethality, fibrosis, and abnormal cardiac performance. Keller, R.S., Shai, S.Y., Babbitt, C.J., Pham, C.G., Solaro, R.J., Valencik, M.L., Loftus, J.C., Ross, R.S. Am. J. Pathol. (2001) [Pubmed]
  13. Perinatal lethality (ple): a mutation caused by integration of a transgene into distal mouse chromosome 15. Beier, D.R., Morton, C.C., Leder, A., Wallace, R., Leder, P. Genomics (1989) [Pubmed]
  14. Ephrin-B1 forward and reverse signaling are required during mouse development. Davy, A., Aubin, J., Soriano, P. Genes Dev. (2004) [Pubmed]
  15. Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Swiatek, P.J., Gridley, T. Genes Dev. (1993) [Pubmed]
  16. S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Pende, M., Um, S.H., Mieulet, V., Sticker, M., Goss, V.L., Mestan, J., Mueller, M., Fumagalli, S., Kozma, S.C., Thomas, G. Mol. Cell. Biol. (2004) [Pubmed]
  17. Deoxyribonuclease IIalpha is required during the phagocytic phase of apoptosis and its loss causes perinatal lethality. Krieser, R.J., MacLea, K.S., Longnecker, D.S., Fields, J.L., Fiering, S., Eastman, A. Cell Death Differ. (2002) [Pubmed]
  18. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Turner, M., Mee, P.J., Costello, P.S., Williams, O., Price, A.A., Duddy, L.P., Furlong, M.T., Geahlen, R.L., Tybulewicz, V.L. Nature (1995) [Pubmed]
  19. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Motohashi, H., Katsuoka, F., Engel, J.D., Yamamoto, M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  20. Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Rudolph, D., Tafuri, A., Gass, P., Hämmerling, G.J., Arnold, B., Schütz, G. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  21. Mice lacking the giant protocadherin mFAT1 exhibit renal slit junction abnormalities and a partially penetrant cyclopia and anophthalmia phenotype. Ciani, L., Patel, A., Allen, N.D., ffrench-Constant, C. Mol. Cell. Biol. (2003) [Pubmed]
  22. Melatonin and light induce phase shifts of circadian activity rhythms in the C3H/HeN mouse. Benloucif, S., Dubocovich, M.L. J. Biol. Rhythms (1996) [Pubmed]
  23. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Lau, M.M., Stewart, C.E., Liu, Z., Bhatt, H., Rotwein, P., Stewart, C.L. Genes Dev. (1994) [Pubmed]
  24. Tissue-specific rescue suggests that placental adenosine deaminase is important for fetal development in mice. Blackburn, M.R., Wakamiya, M., Caskey, C.T., Kellems, R.E. J. Biol. Chem. (1995) [Pubmed]
  25. Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (S1P) receptors, S1P(2)/LP(B2)/EDG-5 and S1P(3)/LP(B3)/EDG-3. Ishii, I., Ye, X., Friedman, B., Kawamura, S., Contos, J.J., Kingsbury, M.A., Yang, A.H., Zhang, G., Brown, J.H., Chun, J. J. Biol. Chem. (2002) [Pubmed]
  26. Dominant-negative beta1 integrin mice have region-specific myelin defects accompanied by alterations in MAPK activity. Lee, K.K., De Repentigny, Y., Saulnier, R., Rippstein, P., Macklin, W.B., Kothary, R. Glia (2006) [Pubmed]
  27. The LIM domain protein Lmo4 is highly expressed in proliferating mouse epithelial tissues. Sum, E.Y., O'Reilly, L.A., Jonas, N., Lindeman, G.J., Visvader, J.E. J. Histochem. Cytochem. (2005) [Pubmed]
  28. Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Houghtaling, S., Timmers, C., Noll, M., Finegold, M.J., Jones, S.N., Meyn, M.S., Grompe, M. Genes Dev. (2003) [Pubmed]
  29. Loss of the Sall3 gene leads to palate deficiency, abnormalities in cranial nerves, and perinatal lethality. Parrish, M., Ott, T., Lance-Jones, C., Schuetz, G., Schwaeger-Nickolenko, A., Monaghan, A.P. Mol. Cell. Biol. (2004) [Pubmed]
  30. Targeted disruption of the Wnt2 gene results in placentation defects. Monkley, S.J., Delaney, S.J., Pennisi, D.J., Christiansen, J.H., Wainwright, B.J. Development (1996) [Pubmed]
  31. Constitutive activation of Notch3 inhibits terminal epithelial differentiation in lungs of transgenic mice. Dang, T.P., Eichenberger, S., Gonzalez, A., Olson, S., Carbone, D.P. Oncogene (2003) [Pubmed]
  32. Conditional inactivation of Pax6 in the pancreas causes early onset of diabetes. Ashery-Padan, R., Zhou, X., Marquardt, T., Herrera, P., Toube, L., Berry, A., Gruss, P. Dev. Biol. (2004) [Pubmed]
WikiGenes - Universities