The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

recA  -  DNA recombination and repair protein;...

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK2694, JW2669, lexB, recH, rnmB, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of recA

 

High impact information on recA

 

Chemical compound and disease context of recA

 

Biological context of recA

  • In the absence of ATP hydrolysis, recA protein can still promote homologous pairing, apparently through the formation of a triple-stranded intermediate [15].
  • We found that a recA mutant that is defective in recombination but proficient in SOS induction could not elicit iSDR [16].
  • UV mutations produced in this cell-free reaction required the recA and umuC gene products and were prevented by rifampicin, an inhibitor of RNA polymerase, which inhibited plasmid replication [17].
  • The enhanced mutagenesis did not depend on recA, uvrA, or umuDC [18].
  • The site of initiation for synthesis in vitro of the recA messenger RNA has been determined by analysis of the 5' nucleotide sequence of [gamma-32P]ATP-labeled transcripts [1].
 

Anatomical context of recA

  • Sedimentation analysis of cellular DNA after hydrogen peroxide treatment showed that reformation was absent in xthA, polA, and polC(Ts) strains but normal in a recA cell line [19].
  • This mutagenic response does not occur in spheroplasts derived from pre-irradiated bacteria carrying defective recA, recF or umuC genes [20].
  • Repair of UV-irradiated plasmid DNA microinjected into frog oocytes was measured by two techniques: transformation of repair-deficient (delta uvrB delta recA delta phr) bacteria, and removal of UV endonuclease-sensitive sites (ESS) [21].
  • We have studied the effect of guanosine-5'-diphosphate-3'-diphosphate (ppGpp) on the transcription of the E. coli tufB and recA operons in a cell-free system containing of purified RNA polymerase holoenzyme [22].
  • In addition, the compact structure was observed in vivo in Escherichia coli: inclusion bodies produced upon induction of recA expression in an overproducing strain have a fibrous morphology with the structural parameters of the compact polymer [23].
 

Associations of recA with chemical compounds

 

Regulatory relationships of recA

  • The fact that an alteration of the dnaB protein specifically suppresses tif-mediated SOS induction implies a role of the replication apparatus in this process, as has been suggested for ultraviolet induction [26].
  • Since recA expression was induced in a recA-deletion strain harboring a plasmid with the ppk gene, poly(P) could be necessary for regulating the expression of SOS genes without depending on the RecA-LexA regulatory network [27].
  • It has been previously reported that the ultraviolet sensitivity of recA strains of Escherichia coli in the dark is suppressed by a plasmid pKY1 which carries the phr gene, suggesting that this is due to a novel effect of photoreactivating enzyme (PRE) of E. coli in the dark (Yamamoto et al., 1983a) [28].
  • We examined, in Escherichia coli, the influence of recA mutant alleles on the level of quinolone resistance promoted by mutations in the gyrA gene [29].
 

Other interactions of recA

  • Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination [25].
  • We have developed an E.coli strain with a non-reverting allele of pyrF that is also suitable for cloning (recA-, hsdR-) [30].
  • Suppression of tif-mediated induction of SOS functions in Escherichia coli by an altered dnaB protein [26].
  • The alternation acted at the level of phoA transcription; it was also recA independent [31].
  • It appears, therefore, that the long patches detected in the uvrD mutant were not identical to the recA-dependent patches seen in wild-type cells [32].
 

Analytical, diagnostic and therapeutic context of recA

References

  1. Organization of the recA gene of Escherichia coli. Horii, T., Ogawa, T., Ogawa, H. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  2. Rapid mutational analysis of regulatory loci in Escherichia coli K-12 using bacteriophage M13. Wertman, K.F., Little, J.W., Mount, D.W. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  3. LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus. Campoy, S., Fontes, M., Padmanabhan, S., Cortés, P., Llagostera, M., Barbé, J. Mol. Microbiol. (2003) [Pubmed]
  4. Novel regulatory mutants of the phosphate regulon in Escherichia coli K-12. Wanner, B.L. J. Mol. Biol. (1986) [Pubmed]
  5. Characterization of lexB mutations in Escherichia coli K-12. Morand, P., Blanco, M., Devoret, R. J. Bacteriol. (1977) [Pubmed]
  6. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Bishop, D.K., Park, D., Xu, L., Kleckner, N. Cell (1992) [Pubmed]
  7. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Brent, R., Ptashne, M. Cell (1985) [Pubmed]
  8. The uvrB gene of Escherichia coli has both lexA-repressed and lexA-independent promoters. Sancar, G.B., Sancar, A., Little, J.W., Rupp, W.D. Cell (1982) [Pubmed]
  9. Regulation of SOS functions: purification of E. coli LexA protein and determination of its specific site cleaved by the RecA protein. Horii, T., Ogawa, T., Nakatani, T., Hase, T., Matsubara, H., Ogawa, H. Cell (1981) [Pubmed]
  10. Repair of haloethylnitrosourea-induced DNA damage in mutant and adapted bacteria. Kacinski, B.M., Rupp, W.D., Ludlum, D.B. Cancer Res. (1985) [Pubmed]
  11. Survival and induction of recA protein in mitomycin C-treated Escherichia coli rec, lex, or uvr strains. Giacomoni, P.U. J. Biol. Chem. (1983) [Pubmed]
  12. tif-dependent induction of colicin E1, prophage lambda, and filamentation in Escherichia coli K-12. Tessman, E.S., Peterson, P.K. J. Bacteriol. (1980) [Pubmed]
  13. Effects of sodium arsenite on the survival of UV-irradiated Escherichia coli: inhibition of a recA-dependent function. Rossman, T., Meyn, M.S., Troll, W. Mutat. Res. (1975) [Pubmed]
  14. Induction of the SOS response by hydroxyurea in Escherichia coli K12. Barbé, J., Villaverde, A., Guerrero, R. Mutat. Res. (1987) [Pubmed]
  15. Structure of the recA protein-ADP complex. Story, R.M., Steitz, T.A. Nature (1992) [Pubmed]
  16. Homologous recombination-dependent initiation of DNA replication from DNA damage-inducible origins in Escherichia coli. Asai, T., Sommer, S., Bailone, A., Kogoma, T. EMBO J. (1993) [Pubmed]
  17. Biochemical analysis of UV mutagenesis in Escherichia coli by using a cell-free reaction coupled to a bioassay: identification of a DNA repair-dependent, replication-independent pathway. Cohen-Fix, O., Livneh, Z. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  18. Multiple pathways for SOS-induced mutagenesis in Escherichia coli: an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Kim, S.R., Maenhaut-Michel, G., Yamada, M., Yamamoto, Y., Matsui, K., Sofuni, T., Nohmi, T., Ohmori, H. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  19. Multiple pathways for repair of hydrogen peroxide-induced DNA damage in Escherichia coli. Hagensee, M.E., Moses, R.E. J. Bacteriol. (1989) [Pubmed]
  20. Mutagenesis resulting from depurination is an SOS process. Schaaper, R.M., Glickman, B.W., Loeb, L.A. Mutat. Res. (1982) [Pubmed]
  21. Rapid and apparently error-prone excision repair of nonreplicating UV-irradiated plasmids in Xenopus laevis oocytes. Hays, J.B., Ackerman, E.J., Pang, Q.S. Mol. Cell. Biol. (1990) [Pubmed]
  22. Selective inhibition of transcription of the E. coli tufB operon by guanosine-5'-diphosphate-3'-diphosphate. Mizushima-Sugano, J., Miyajima, A., Kaziro, Y. Mol. Gen. Genet. (1983) [Pubmed]
  23. The inactive form of recA protein: the 'compact' structure. Ruigrok, R.W., Bohrmann, B., Hewat, E., Engel, A., Kellenberger, E., DiCapua, E. EMBO J. (1993) [Pubmed]
  24. Contacts between the LexA repressor--or its DNA-binding domain--and the backbone of the recA operator DNA. Hurstel, S., Granger-Schnarr, M., Schnarr, M. EMBO J. (1988) [Pubmed]
  25. Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination. Madiraju, M.V., Templin, A., Clark, A.J. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  26. Suppression of tif-mediated induction of SOS functions in Escherichia coli by an altered dnaB protein. D'Ari, R., George, J., Huisman, O. J. Bacteriol. (1979) [Pubmed]
  27. Involvement of inorganic polyphosphate in expression of SOS genes. Tsutsumi, K., Munekata, M., Shiba, T. Biochim. Biophys. Acta (2000) [Pubmed]
  28. A multicopy phr-plasmid increases the ultraviolet resistance of a recA strain of Escherichia coli. Yamamoto, K., Satake, M., Shinagawa, H. Mutat. Res. (1984) [Pubmed]
  29. Influence of recA mutations on gyrA dependent quinolone resistance. Urios, A., Herrera, G., Aleixandre, V., Blanco, M. Biochimie (1991) [Pubmed]
  30. Recovery of YAC-end sequences through complementation of an Escherichia coli pyrF mutation. Wright, D.A., Park, S.K., Wu, D., Phillips, G.J., Rodermel, S.R., Voytas, D.F. Nucleic Acids Res. (1997) [Pubmed]
  31. Molecular cloning of the wild-type phoM operon in Escherichia coli K-12. Wanner, B.L., Wilmes, M.R., Hunter, E. J. Bacteriol. (1988) [Pubmed]
  32. Long repair replication patches are produced by the short-patch pathway in a uvrD252 (recL152) mutant of Escherichia coli K-12. Rothman, R.H., Fried, B. J. Bacteriol. (1984) [Pubmed]
  33. The structure of the E. coli recA protein monomer and polymer. Story, R.M., Weber, I.T., Steitz, T.A. Nature (1992) [Pubmed]
  34. Different mechanisms of thioredoxin in its reduced and oxidized forms in defense against hydrogen peroxide in Escherichia coli. Takemoto, T., Zhang, Q.M., Yonei, S. Free Radic. Biol. Med. (1998) [Pubmed]
  35. Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Norman, A., Hestbjerg Hansen, L., Sørensen, S.J. Appl. Environ. Microbiol. (2005) [Pubmed]
  36. The use of radiation-induced bacterial promoters in anaerobic conditions: a means to control gene expression in clostridium-mediated therapy for cancer. Nuyts, S., Van Mellaert, L., Theys, J., Landuyt, W., Lambin, P., Anné, J. Radiat. Res. (2001) [Pubmed]
  37. Quantitative evaluation of recA gene expression in Escherichia coli. Casaregola, S., D'Ari, R., Huisman, O. Mol. Gen. Genet. (1982) [Pubmed]
 
WikiGenes - Universities