The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Acetosyringon     1-(4-hydroxy-3,5-dimethoxy- phenyl)ethanone

Synonyms: Acetosyringone, SPECTRUM300610, SureCN15511, CHEMBL224146, CCRIS 7286, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of C10664


High impact information on C10664


Chemical compound and disease context of C10664


Biological context of C10664


Anatomical context of C10664

  • The transformation efficiency is correlated with the number of A. tumefaciens cells used, pre-treating bacterial cells with acetosyringone prior to co-cultivation with fungal spores, and the duration of co-cultivation [17].

Associations of C10664 with other chemical compounds


Gene context of C10664

  • This suggests a multifunctional role for virA and virG: at low concentrations of acetosyringone they mediate chemotaxis and at higher concentrations they effect vir-induction [9].
  • Transcription of virF is directed from left to right, towards the T region, and is strongly induced by the phenolic compound acetosyringone [22].
  • A virJ-phoA fusion expressed enzymatically active alkaline phosphatase, indicating that VirJ is at least partially exported. virJ is induced in a VirA/VirG-dependent fashion by the vir gene inducer acetosyringone [23].
  • In A. tumefaciens, the expression of virE was induced by acetosyringone and required the presence of pTiC58 [24].
  • When a deletion was introduced into the virA gene in the region encoding the periplasmic portion of the VirA protein, enhancement by glucose disappeared, but vir expression was induced by acetosyringone in this mutant [15].

Analytical, diagnostic and therapeutic context of C10664


  1. An ice nucleation reporter gene system: identification of inducible pathogenicity genes in Pseudomonas syringae pv. phaseolicola. Lindgren, P.B., Frederick, R., Govindarajan, A.G., Panopoulos, N.J., Staskawicz, B.J., Lindow, S.E. EMBO J. (1989) [Pubmed]
  2. Reconstitution of acetosyringone-mediated Agrobacterium tumefaciens virulence gene expression in the heterologous host Escherichia coli. Lohrke, S.M., Yang, H., Jin, S. J. Bacteriol. (2001) [Pubmed]
  3. Involvement of acetosyringone in plant-pathogen recognition. Baker, C.J., Mock, N.M., Whitaker, B.D., Roberts, D.P., Rice, C.P., Deahl, K.L., Aver'yanov, A.A. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  4. VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA--protein complex at the 5' terminus of T-strand molecules. Herrera-Estrella, A., Chen, Z.M., Van Montagu, M., Wang, K. EMBO J. (1988) [Pubmed]
  5. Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Liu, P., Nester, E.W. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  6. VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Cho, H., Winans, S.C. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  7. Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Yusibov, V.M., Steck, T.R., Gupta, V., Gelvin, S.B. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  8. Preformed dimeric state of the sensor protein VirA is involved in plant--Agrobacterium signal transduction. Pan, S.Q., Charles, T., Jin, S., Wu, Z.L., Nester, E.W. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  9. virA and virG are the Ti-plasmid functions required for chemotaxis of Agrobacterium tumefaciens towards acetosyringone. Shaw, C.H., Ashby, A.M., Brown, A., Royal, C., Loake, G.J., Shaw, C.H. Mol. Microbiol. (1988) [Pubmed]
  10. Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination. Mishiba, K., Chin, D.P., Mii, M. Plant Cell Rep. (2005) [Pubmed]
  11. In vitro plant regeneration and genetic transformation of Dichanthium annulatum. Kumar, J., Shukla, S.M., Bhat, V., Gupta, S., Gupta, M.G. DNA Cell Biol. (2005) [Pubmed]
  12. Synergistic action of phenolic signal compounds and carbohydrates in the induction of virulence gene expression of Agrobacterium tumefaciens. Song, Y.N., Shibuya, M., Ebizuka, Y., Sankawa, U. Chem. Pharm. Bull. (1991) [Pubmed]
  13. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Kumlehn, J., Serazetdinova, L., Hensel, G., Becker, D., Loerz, H. Plant Biotechnol. J. (2006) [Pubmed]
  14. High levels of double-stranded transferred DNA (T-DNA) processing from an intact nopaline Ti plasmid. Steck, T.R., Close, T.J., Kado, C.I. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  15. Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Shimoda, N., Toyoda-Yamamoto, A., Nagamine, J., Usami, S., Katayama, M., Sakagami, Y., Machida, Y. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  16. Delineation of the regulatory region sequences of Agrobacterium tumefaciens virB operon. Das, A., Pazour, G.J. Nucleic Acids Res. (1989) [Pubmed]
  17. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Rho, H.S., Kang, S., Lee, Y.H. Mol. Cells (2001) [Pubmed]
  18. A nontransformable Triticum monococcum monocotyledonous culture produces the potent Agrobacterium vir-inducing compound ethyl ferulate. Messens, E., Dekeyser, R., Stachel, S.E. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  19. The right end of the vir region of an octopine-type Ti plasmid contains four new members of the vir regulon that are not essential for pathogenesis. Kalogeraki, V.S., Zhu, J., Stryker, J.L., Winans, S.C. J. Bacteriol. (2000) [Pubmed]
  20. Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. Fullner, K.J., Nester, E.W. J. Bacteriol. (1996) [Pubmed]
  21. Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. Rogowsky, P.M., Close, T.J., Chimera, J.A., Shaw, J.J., Kado, C.I. J. Bacteriol. (1987) [Pubmed]
  22. Octopine and nopaline strains of Agrobacterium tumefaciens differ in virulence; molecular characterization of the virF locus. Melchers, L.S., Maroney, M.J., den Dulk-Ras, A., Thompson, D.V., van Vuuren, H.A., Schilperoort, R.A., Hooykaas, P.J. Plant Mol. Biol. (1990) [Pubmed]
  23. The octopine-type Ti plasmid pTiA6 of Agrobacterium tumefaciens contains a gene homologous to the chromosomal virulence gene acvB. Kalogeraki, V.S., Winans, S.C. J. Bacteriol. (1995) [Pubmed]
  24. Characterization of the virE locus of Agrobacterium tumefaciens plasmid pTiC58. Hirooka, T., Rogowsky, P.M., Kado, C.I. J. Bacteriol. (1987) [Pubmed]
  25. Role of the overdrive sequence in T-DNA border cleavage in Agrobacterium. Toro, N., Datta, A., Yanofsky, M., Nester, E. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  26. Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. Winans, S.C. J. Bacteriol. (1990) [Pubmed]
  27. Proteomic analysis of Agrobacterium tumefaciens response to the Vir gene inducer acetosyringone. Lai, E.M., Shih, H.W., Wen, S.R., Cheng, M.W., Hwang, H.H., Chiu, S.H. Proteomics (2006) [Pubmed]
WikiGenes - Universities