The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Lopac-M-6191     2-chloro-5-nitro-N-phenyl- benzamide

Synonyms: Tocris-1508, CHEMBL375270, SureCN420231, AG-C-76066, AG-E-66518, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Lopac-M-6191

  • LPA-mediated proliferation was blocked by VPC-32179, a competitive antagonist of LPA(1) and LPA(3) receptors, and by pertussis toxin, and it was also attenuated by GW9662, a selective antagonist of peroxisome proliferator-activated receptor (PPAR)-gamma [1].
  • METHODS: Rats were pretreated with LPS (1 mg/kg, IP, 24 hours prior to ischemia) in the absence (control) or presence of the selective PPARgamma antagonist GW9662 (1 mg/kg, IP, 24 and 12 hours prior to ischemia) [2].
  • Treatment of HF diet-fed mice with GW9662 revealed that this compound prevented HF diet-induced obesity without affecting food intake [3].
  • The effects of AS-6 on TNF-alpha-stimulated VCAM-1 and CX3CL1 expression were abolished in cells transfected with an adenovirus expressing dominant-negative PPARgamma and in cells treated with a PPARgamma specific inhibitor, GW9662, confirming again that the anti-inflammatory effect of AS-6 was PPARgamma-dependent [4].
  • PPARgamma expression is a feature of esophageal cancer cell lines, and in the present investigation, the PPARgamma antagonists T0070907 and GW9662 could induce loss of invasion but could not induce growth reduction or apoptosis at low concentrations (< 10 mM) [5].
 

High impact information on Lopac-M-6191

  • Neointima-inducing LPA analogs up-regulated the CD36 scavenger receptor in vitro and in vivo and elicited dedifferentiation of cultured vascular smooth muscle cells that was prevented by GW9662 [6].
  • Interestingly, this inhibitory effect can be mimicked by both natural as well as synthetic peroxisome proliferator-activated receptor gamma1 (PPARgamma1) ligands and can be blocked by the irreversible PPARgamma antagonist GW 9662 [7].
  • In KU7 cells, induction of caveolin-1 by each of the PPARgamma agonists was significantly down-regulated after cotreatment with the PPARgamma antagonist GW9662 [8].
  • Furthermore, the capacity of all of these treatments to potentiate HL-60 cell differentiation was significantly reduced in the presence of the PPARgamma-antagonist GW 9662 [9].
  • A PPARgamma antagonist, GW9662, did not block this effect, although a PTP inhibitor abrogated it [10].
 

Biological context of Lopac-M-6191

 

Anatomical context of Lopac-M-6191

  • Unexpectedly, GW9662, a PPARgamma antagonist, increases lymphocyte IFN-gamma expression [16].
  • Although CDDO and CDDO-Im both bind and transactivate peroxisome proliferator-activated receptor (PPAR) gamma, the irreversible PPARgamma antagonist GW9662 does not block the ability of either CDDO or CDDO-Im to induce differentiation; moreover, PPARgamma-null fibroblasts are still sensitive to the growth-suppressive effects of CDDO [17].
  • The functional activity of GW9662 as an antagonist of PPARgamma was confirmed in an assay of adipocyte differentiation [18].
  • Antagonizing PPARgamma activity by GW9662 or BADGE potently blocked Ang II-induced neurite outgrowth (Ang II + GW9662: 6.6 +/- 1.5-fold, p < 0.05; Ang II + BADGE: 1.3 +/- 0.7-fold, p < 0.01) [19].
  • GW9662 suppressed any increase in the amount of visceral adipose tissue, but it did not change HF diet-induced glucose intolerance [3].
 

Associations of Lopac-M-6191 with other chemical compounds

 

Gene context of Lopac-M-6191

 

Analytical, diagnostic and therapeutic context of Lopac-M-6191

References

  1. Lysophosphatidic acid accelerates the development of human mast cells. Bagga, S., Price, K.S., Lin, D.A., Friend, D.S., Austen, K.F., Boyce, J.A. Blood (2004) [Pubmed]
  2. The selective PPARgamma antagonist GW9662 reverses the protection of LPS in a model of renal ischemia-reperfusion. Collino, M., Patel, N.S., Lawrence, K.M., Collin, M., Latchman, D.S., Yaqoob, M.M., Thiemermann, C. Kidney Int. (2005) [Pubmed]
  3. Antagonism of peroxisome proliferator-activated receptor gamma prevents high-fat diet-induced obesity in vivo. Nakano, R., Kurosaki, E., Yoshida, S., Yokono, M., Shimaya, A., Maruyama, T., Shibasaki, M. Biochem. Pharmacol. (2006) [Pubmed]
  4. The ascochlorin derivative, AS-6, inhibits TNF-alpha-induced adhesion molecule and chemokine expression in rat vascular smooth muscle cells. Park, K.G., Lee, K.M., Chang, Y.C., Magae, J., Ando, K., Kim, K.B., Kim, Y.N., Kim, H.S., Park, J.Y., Lee, K.U., Lee, I.K. Life Sci. (2006) [Pubmed]
  5. Inhibition of peroxisome proliferator-activated receptor gamma activity in esophageal carcinoma cells results in a drastic decrease of invasive properties. Takahashi, H., Fujita, K., Fujisawa, T., Yonemitsu, K., Tomimoto, A., Ikeda, I., Yoneda, M., Masuda, T., Schaefer, K., Saubermann, L.J., Shimamura, T., Saitoh, S., Tachibana, M., Wada, K., Nakagama, H., Nakajima, A. Cancer Sci. (2006) [Pubmed]
  6. Lysophosphatidic acid induces neointima formation through PPARgamma activation. Zhang, C., Baker, D.L., Yasuda, S., Makarova, N., Balazs, L., Johnson, L.R., Marathe, G.K., McIntyre, T.M., Xu, Y., Prestwich, G.D., Byun, H.S., Bittman, R., Tigyi, G. J. Exp. Med. (2004) [Pubmed]
  7. IL-4 inhibits osteoclast formation through a direct action on osteoclast precursors via peroxisome proliferator-activated receptor gamma 1. Bendixen, A.C., Shevde, N.K., Dienger, K.M., Willson, T.M., Funk, C.D., Pike, J.W. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  8. Inhibition of bladder tumor growth by 1,1-bis(3'-indolyl)-1-(p-substitutedphenyl)methanes: a new class of peroxisome proliferator-activated receptor gamma agonists. Kassouf, W., Chintharlapalli, S., Abdelrahim, M., Nelkin, G., Safe, S., Kamat, A.M. Cancer Res. (2006) [Pubmed]
  9. The aldo-keto reductase AKR1C3 is a novel suppressor of cell differentiation that provides a plausible target for the non-cyclooxygenase-dependent antineoplastic actions of nonsteroidal anti-inflammatory drugs. Desmond, J.C., Mountford, J.C., Drayson, M.T., Walker, E.A., Hewison, M., Ride, J.P., Luong, Q.T., Hayden, R.E., Vanin, E.F., Bunce, C.M. Cancer Res. (2003) [Pubmed]
  10. A peroxisome proliferator-activated receptor-gamma agonist, troglitazone, facilitates caspase-8 and -9 activities by increasing the enzymatic activity of protein-tyrosine phosphatase-1B on human glioma cells. Akasaki, Y., Liu, G., Matundan, H.H., Ng, H., Yuan, X., Zeng, Z., Black, K.L., Yu, J.S. J. Biol. Chem. (2006) [Pubmed]
  11. Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages: the role of the peroxisome proliferator-activated receptor {gamma}-liver X receptor {alpha}-ABCA1 pathway. Xia, M., Hou, M., Zhu, H., Ma, J., Tang, Z., Wang, Q., Li, Y., Chi, D., Yu, X., Zhao, T., Han, P., Xia, X., Ling, W. J. Biol. Chem. (2005) [Pubmed]
  12. Peroxisome Proliferator-Activated Receptor-{gamma} Activates p53 Gene Promoter Binding to the Nuclear Factor-{kappa}B Sequence in Human MCF7 Breast Cancer Cells. Bonofiglio, D., Aquila, S., Catalano, S., Gabriele, S., Belmonte, M., Middea, E., Qi, H., Morelli, C., Gentile, M., Maggiolini, M., And??, S. Mol. Endocrinol. (2006) [Pubmed]
  13. Peroxisome proliferator-activated receptor isoform expression changes in human gestational tissues with labor at term. Berry, E.B., Eykholt, R., Helliwell, R.J., Gilmour, R.S., Mitchell, M.D., Marvin, K.W. Mol. Pharmacol. (2003) [Pubmed]
  14. Nanomolar and micromolar effects of 15-deoxy-delta 12,14-prostaglandin J2 on amnion-derived WISH epithelial cells: differential roles of peroxisome proliferator-activated receptors gamma and delta and nuclear factor kappa B. Berry, E.B., Keelan, J.A., Helliwell, R.J., Gilmour, R.S., Mitchell, M.D. Mol. Pharmacol. (2005) [Pubmed]
  15. PPARgamma inhibitors reduce tubulin protein levels by a PPARgamma, PPARdelta and proteasome-independent mechanism, resulting in cell cycle arrest, apoptosis and reduced metastasis of colorectal carcinoma cells. Schaefer, K.L., Takahashi, H., Morales, V.M., Harris, G., Barton, S., Osawa, E., Nakajima, A., Saubermann, L.J. Int. J. Cancer (2007) [Pubmed]
  16. Repression of IFN-gamma expression by peroxisome proliferator-activated receptor gamma. Cunard, R., Eto, Y., Muljadi, J.T., Glass, C.K., Kelly, C.J., Ricote, M. J. Immunol. (2004) [Pubmed]
  17. The novel synthetic triterpenoid, CDDO-imidazolide, inhibits inflammatory response and tumor growth in vivo. Place, A.E., Suh, N., Williams, C.R., Risingsong, R., Honda, T., Honda, Y., Gribble, G.W., Leesnitzer, L.M., Stimmel, J.B., Willson, T.M., Rosen, E., Sporn, M.B. Clin. Cancer Res. (2003) [Pubmed]
  18. Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Leesnitzer, L.M., Parks, D.J., Bledsoe, R.K., Cobb, J.E., Collins, J.L., Consler, T.G., Davis, R.G., Hull-Ryde, E.A., Lenhard, J.M., Patel, L., Plunket, K.D., Shenk, J.L., Stimmel, J.B., Therapontos, C., Willson, T.M., Blanchard, S.G. Biochemistry (2002) [Pubmed]
  19. Angiotensin II induces peroxisome proliferator-activated receptor gamma in PC12W cells via angiotensin type 2 receptor activation. Zhao, Y., Foryst-Ludwig, A., Bruemmer, D., Culman, J., Bader, M., Unger, T., Kintscher, U. J. Neurochem. (2005) [Pubmed]
  20. Inhibition of interleukin-1beta-induced cyclooxygenase 2 expression in human synovial fibroblasts by 15-deoxy-Delta12,14-prostaglandin J2 through a histone deacetylase-independent mechanism. Farrajota, K., Cheng, S., Martel-Pelletier, J., Afif, H., Pelletier, J.P., Li, X., Ranger, P., Fahmi, H. Arthritis Rheum. (2005) [Pubmed]
  21. Pioglitazone induces vascular smooth muscle cell apoptosis through a peroxisome proliferator-activated receptor-gamma, transforming growth factor-beta1, and a Smad2-dependent mechanism. Redondo, S., Ruiz, E., Santos-Gallego, C.G., Padilla, E., Tejerina, T. Diabetes (2005) [Pubmed]
  22. Effects of rosiglitazone and metformin on pancreatic beta cell gene expression. Richardson, H., Campbell, S.C., Smith, S.A., Macfarlane, W.M. Diabetologia (2006) [Pubmed]
  23. Involvement of PPARgamma in oxidative stress-mediated prostaglandin E(2) production in SZ95 human sebaceous gland cells. Zhang, Q., Seltmann, H., Zouboulis, C.C., Konger, R.L. J. Invest. Dermatol. (2006) [Pubmed]
  24. PPARgamma mediates NSAIDs-induced upregulation of TFF2 expression in gastric epithelial cells. Shimada, T., Koitabashi, A., Fujii, Y., Hashimoto, T., Hosaka, K., Tabei, K., Namatame, T., Yoneda, M., Hiraishi, H., Terano, A. FEBS Lett. (2004) [Pubmed]
  25. Peroxisome-proliferator-activated-receptor gamma (PPARgamma) independent induction of CD36 in THP-1 monocytes by retinoic acid. Han, S., Sidell, N. Immunology (2002) [Pubmed]
  26. 15-deoxy-delta(12,14)-prostaglandin j(2) and troglitazone regulation of the release of phospholipid metabolites, inflammatory cytokines and proteases from human gestational tissues. Lappas, M., Permezel, M., Rice, G.E. Placenta (2006) [Pubmed]
  27. Activation of PPARgamma increases PTEN expression in pancreatic cancer cells. Farrow, B., Evers, B.M. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  28. Thiazolidinedione drugs down-regulate CXCR4 expression on human colorectal cancer cells in a peroxisome proliferator activated receptor gamma-dependent manner. Richard, C.L., Blay, J. Int. J. Oncol. (2007) [Pubmed]
  29. The cardioprotective effects of preconditioning with endotoxin, but not ischemia, are abolished by a peroxisome proliferator-activated receptor-gamma antagonist. Sivarajah, A., McDonald, M.C., Thiemermann, C. J. Pharmacol. Exp. Ther. (2005) [Pubmed]
  30. Resveratrol inhibits macrophage expression of EMMPRIN by activating PPARgamma. Ge, H., Zhang, J.F., Guo, B.S., He, Q., Wang, B.Y., He, B., Wang, C.Q. Vascul. Pharmacol. (2007) [Pubmed]
 
WikiGenes - Universities