The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Hypnone     1-phenylethanone

Synonyms: Acetofenon, Acetophenon, ACETOPHENONE, Acetylbenzol, Acetylbenzene, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of acetophenone

  • Repair endonucleases, viz. endonuclease III, formamidopyrimidine-DNA glycosylase (FPG protein), endonuclease IV, exonuclease III and UV endonuclease, were used to analyse the modifications induced in bacteriophage PM2 DNA by 333 nm laser irradiation in the presence of acetone or acetophenone [1].
  • For more information on this point, lambda phage were irradiated with 313 nm light in the presence of acetophenone, for which the major photoproduct is reported to be the thymine-thymine cyclobutyl dimer, with no measurable Pyr(6-4)Pyo photoproducts [2].
  • The microbial metabolism of acetophenone. Metabolism of acetophenone and some chloroacetophenones by an Arthrobacter species [3].
  • The impure dichloride salt of tetrakis[p-(dimethylamino)phenyl]ethylene and a pinacolone that is a substituted acetophenone show several biological properties, one of which is activity against lymphosarcoma in mice [4].
  • Microbial conversion of ethylbenzene to 1-phenethanol and acetophenone by Nocardia tartaricans ATCC 31190 [5].
 

High impact information on acetophenone

  • Phase separation of the constituents of catalytic systems eliminated substrate inhibition (hydrogenation of aldehydes) and helped formation of catalytically active species ([RhH(PPh(3))(3)] from [RhCl(PPh(3))(3)] in hydrogenation of acetophenone) [6].
  • Also, coexpression of wild-type M71 ORs with beta(2)-ARs resulted in cAMP responses to the M71 ligand acetophenone [7].
  • We also exposed pRSVcat plasmid to UVC (to induce CPD and 6-4PP), to UVC + photolyase (to leave only 6-4PP on the plasmid), or to UVB + acetophenone (to induce only CPD) [8].
  • A study of the kinetics of the hydrogenation of acetophenone in benzene catalyzed by 3a indicates a rate law: rate = k[c,c-3a](initial)[H(2)] with k = 7.5 M(-1) s(-1) [9].
  • Experimental values for the activation parameters of acetophenone reduction using the BINOLate/Al/(i)PrOH system (DeltaG# = 21.8 kcal/mol, DeltaH# = 18.5 kcal/mol, DeltaS# = -11.7 au) were determined on the basis of kinetic investigation of the reaction and are in good agreement with the computational findings for this system [10].
 

Chemical compound and disease context of acetophenone

 

Biological context of acetophenone

 

Anatomical context of acetophenone

 

Associations of acetophenone with other chemical compounds

 

Gene context of acetophenone

  • In the present investigation, we describe the effect of oxalyl bis (N-phenyl) hydroxamic acid (OBPHA) and copper N-(2-hydroxy acetophenone) glycinate (CuNG) on multidrug-resistant P-gp-expressing CEM/ADR5000 T-cell acute lymphoblastic leukemia cells [22].
  • We show that the odorants acetophenone and benzaldehyde are agonists for the M71 OR and that M71-expressing neurons are functionally similar in their response properties across concentration [30].
  • 4,4'Dihydroxybenzylidene acetophenone, an esterase-stable MeHPLA analog, was also found to be a good competitor, exhibiting a 50% inhibition at 100-fold molar excess concentration [31].
  • The formation of acetophenone, with one carbon less than cumene, is suggested to occur via a multistep pathway involving decarbonylation of the acyl radical from 2-phenylpropanal [32].
  • Using this whole-cell biocatalyst, efficient conversion of prochiral ketones to chiral alcohols was achieved: 66% acetophenone was reduced to (R)-phenylethanol over 12 h, whereas only 19% (R)-phenylethanol was formed under the same conditions with cells containing ADH and FDH genes but without PNT genes [33].
 

Analytical, diagnostic and therapeutic context of acetophenone

  • Serum TxB2 concentrations (from clotted blood) were suppressed by 89.1% (p less than 0.001) and 41.2% (p less than 0.01) at 3 and 24 hours, respectively, following a single subcutaneous injection of 100 mg/kg of 4'-(Imidazol-1-yl) acetophenone suspended in olive oil [34].
  • Cytotoxic activities of some mono and bis Mannich bases derived from acetophenone in brine shrimp bioassay [35].

References

  1. Endonuclease-sensitive DNA modifications induced by acetone and acetophenone as photosensitizers. Epe, B., Henzl, H., Adam, W., Saha-Möller, C.R. Nucleic Acids Res. (1993) [Pubmed]
  2. Changes in DNA base sequence induced by targeted mutagenesis of lambda phage by ultraviolet light. Wood, R.D., Skopek, T.R., Hutchinson, F. J. Mol. Biol. (1984) [Pubmed]
  3. The microbial metabolism of acetophenone. Metabolism of acetophenone and some chloroacetophenones by an Arthrobacter species. Cripps, R.E. Biochem. J. (1975) [Pubmed]
  4. Some biological properties of the impure dichloride salt of tetrakis[p-(dimethylamino)phenyl]ethylene and a pinacolone. LePage, G.A., Elofson, R.M., Schulz, K.F., Laidler, J., Kowalewski, K.P., Hay, A.S., Crawford, R.J., Tanner, D., Sandin, R.B. J. Med. Chem. (1983) [Pubmed]
  5. Microbial conversion of ethylbenzene to 1-phenethanol and acetophenone by Nocardia tartaricans ATCC 31190. Cox, D.P., Goldsmith, C.D. Appl. Environ. Microbiol. (1979) [Pubmed]
  6. Aqueous biphasic hydrogenations. Joó, F. Acc. Chem. Res. (2002) [Pubmed]
  7. Olfactory receptor surface expression is driven by association with the beta2-adrenergic receptor. Hague, C., Uberti, M.A., Chen, Z., Bush, C.F., Jones, S.V., Ressler, K.J., Hall, R.A., Minneman, K.P. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  8. The xeroderma pigmentosum group C gene leads to selective repair of cyclobutane pyrimidine dimers rather than 6-4 photoproducts. Emmert, S., Kobayashi, N., Khan, S.G., Kraemer, K.H. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  9. A succession of isomers of ruthenium dihydride complexes. Which one is the ketone hydrogenation catalyst? Abbel, R., Abdur-Rashid, K., Faatz, M., Hadzovic, A., Lough, A.J., Morris, R.H. J. Am. Chem. Soc. (2005) [Pubmed]
  10. The mechanism of aluminum-catalyzed Meerwein-Schmidt-Ponndorf-Verley reduction of carbonyls to alcohols. Cohen, R., Graves, C.R., Nguyen, S.T., Martin, J.M., Ratner, M.A. J. Am. Chem. Soc. (2004) [Pubmed]
  11. The metabolism of 1-phenylethanol and acetophenone by Nocardia T5 and an Arthrobacter species. Cripps, R.E., Trudgill, P.W., Whateley, J.G. Eur. J. Biochem. (1978) [Pubmed]
  12. The role of a novel copper complex in overcoming doxorubicin resistance in Ehrlich ascites carcinoma cells in vivo. Majumder, S., Dutta, P., Mookerjee, A., Choudhuri, S.K. Chem. Biol. Interact. (2006) [Pubmed]
  13. Far-UV photochemistry and photosensitization of 2'-deoxycytidylyl-(3'-5')-thymidine: isolation and characterization of the main photoproducts. Douki, T., Cadet, J. J. Photochem. Photobiol. B, Biol. (1992) [Pubmed]
  14. Genetic exchanges induced by structural damage in nonreplicating phage lambda DNA. Howard-Flanders, P., Lin, P.F., Bardwell, E. Basic Life Sci. (1975) [Pubmed]
  15. Kinetic modeling of acetophenone reduction catalyzed by alcohol dehydrogenase from Thermoanaerobacter sp. Findrik, Z., Vasic'-Racki, D., Lütz, S., Daussmann, T., Wandrey, C. Biotechnol. Lett. (2005) [Pubmed]
  16. Oxidation-active flavin models: oxidation of alpha-hydroxy acids by benzo-dipteridine bearing metal-binding site in the presence of divalent metal ion and base in organic solvents. Ohshiro, H., Mitsui, K., Ando, N., Ohsawa, Y., Koinuma, W., Takahashi, H., Kondo, S.I., Nabeshima, T., Yano, Y. J. Am. Chem. Soc. (2001) [Pubmed]
  17. CD studies of conformational changes of DNA upon photosensitized UV-irradiation at 313 nm. Lang, H. Nucleic Acids Res. (1975) [Pubmed]
  18. The crystal structure of R-specific alcohol dehydrogenase from Lactobacillus brevis suggests the structural basis of its metal dependency. Niefind, K., Müller, J., Riebel, B., Hummel, W., Schomburg, D. J. Mol. Biol. (2003) [Pubmed]
  19. Synthesis and beta-adrenergic blocking activity of a novel class of aromatic oxime ethers. Leclerc, G., Mann, A., Wermuth, C.G., Bieth, N., Schwartz, J. J. Med. Chem. (1977) [Pubmed]
  20. Induction of peroxisomal beta-oxidation in the rat liver in vivo and in vitro by tetrazole-substituted acetophenones: structure-activity relationships. Eacho, P.I., Foxworthy, P.S., Dillard, R.D., Whitesitt, C.A., Herron, D.K., Marshall, W.S. Toxicol. Appl. Pharmacol. (1989) [Pubmed]
  21. Contribution of glibenclamide-sensitive, ATP-dependent K+ channel activation to acetophenone analogues-mediated in vitro pulmonary artery relaxation of rat. Seto, S.W., Ho, Y.Y., Hui, H.N., Au, A.L., Kwan, Y.W. Life Sci. (2006) [Pubmed]
  22. Reversal of drug resistance in P-glycoprotein-expressing T-cell acute lymphoblastic CEM leukemia cells by copper N-(2-hydroxy acetophenone) glycinate and oxalyl bis (N-phenyl) hydroxamic acid. Majumder, S., Dutta, P., Mukherjee, P., Datta, E.R., Efferth, T., Bhattacharya, S., Choudhuri, S.K. Cancer Lett. (2006) [Pubmed]
  23. Acetophenone glycosides from thyme (Thymus vulgaris L.). Wang, M., Kikuzaki, H., Lin, C.C., Kahyaoglu, A., Huang, M.T., Nakatani, N., Ho, C.T. J. Agric. Food Chem. (1999) [Pubmed]
  24. Synthetic and biological activity evaluation studies on novel 1,3-diarylpropenones. Mukherjee, S., Kumar, V., Prasad, A.K., Raj, H.G., Bracke, M.E., Olsen, C.E., Jain, S.C., Parmar, V.S. Bioorg. Med. Chem. (2001) [Pubmed]
  25. Mechanism of the hydrogenation of ketones catalyzed by trans-dihydrido(diamine)ruthenium II complexes. Abdur-Rashid, K., Clapham, S.E., Hadzovic, A., Harvey, J.N., Lough, A.J., Morris, R.H. J. Am. Chem. Soc. (2002) [Pubmed]
  26. Leukotriene receptor antagonists. 2. The [[(tetrazol-5-ylaryl)oxy]methyl]acetophenone derivatives. Dillard, R.D., Carr, F.P., McCullough, D., Haisch, K.D., Rinkema, L.E., Fleisch, J.H. J. Med. Chem. (1987) [Pubmed]
  27. Bromoacetophenone as an affinity reagent for human liver aldehyde dehydrogenase. MacKerell, A.D., MacWright, R.S., Pietruszko, R. Biochemistry (1986) [Pubmed]
  28. Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Kniemeyer, O., Fischer, T., Wilkes, H., Glöckner, F.O., Widdel, F. Appl. Environ. Microbiol. (2003) [Pubmed]
  29. Synthesis of dendritic catalysts and application in asymmetric transfer hydrogenation. Chen, Y.C., Wu, T.F., Jiang, L., Deng, J.G., Liu, H., Zhu, J., Jiang, Y.Z. J. Org. Chem. (2005) [Pubmed]
  30. Odorant receptor expression defines functional units in the mouse olfactory system. Bozza, T., Feinstein, P., Zheng, C., Mombaerts, P. J. Neurosci. (2002) [Pubmed]
  31. In vitro and in vivo inhibition of nuclear type II estrogen binding sites in the dorsolateral prostate of noble rats. Ho, S.M., Viccione, T., Yu, M. J. Steroid Biochem. Mol. Biol. (1993) [Pubmed]
  32. Cumene oxidation by cis-[RuIV(bpy)2(py)(O)]2+, revisited. Bryant, J.R., Matsuo, T., Mayer, J.M. Inorganic chemistry. (2004) [Pubmed]
  33. Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase. Weckbecker, A., Hummel, W. Biotechnol. Lett. (2004) [Pubmed]
  34. Attenuation of the development of hypertension in spontaneously hypertensive rats by the thromboxane synthetase inhibitor, 4'-(imidazol-1-yl) acetophenone. Uderman, H.D., Workman, R.J., Jackson, E.K. Prostaglandins (1982) [Pubmed]
  35. Cytotoxic activities of some mono and bis Mannich bases derived from acetophenone in brine shrimp bioassay. Gul, H.I., Gul, M., Hänninen, O. Arzneimittel-Forschung. (2002) [Pubmed]
 
WikiGenes - Universities