The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Artemia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Artemia

 

High impact information on Artemia

  • The primary structure of elongation factor EF-1 alpha from the brine shrimp Artemia [6].
  • The identities of the P1 and P2 cDNAs were confirmed by the strong similarities of their encoded amino acid sequences to published primary structures of the homologous rat, brine shrimp, and Saccharomyces cerevisiae proteins [7].
  • Genomic organization and developmental pattern of expression of the engrailed gene from the brine shrimp Artemia [8].
  • Cloning and expression of a novel, highly truncated phosphoinositide-specific phospholipase C cDNA from embryos of the brine shrimp, Artemia [9].
  • The M(r) 38,000 RNA-binding protein (P38) is the major component of translationally repressed messenger ribonucleoproteins in cryptobiotic gastrulae of the brine shrimp Artemia [10].
 

Chemical compound and disease context of Artemia

 

Biological context of Artemia

 

Anatomical context of Artemia

  • Both compounds, together with acetylbenzoisochromanquinone, showed in vitro strong activity against brine shrimp, KB cells, and chloroquine-resistant P. falciparum [21].
  • Furthermore, rabbit antibodies to EF-1 from A. salina which was previously shown to contain eEF-Ts [Slobin, L. I. and Möller, W. (1978) Eur. J. Biochem. 84, 69--77] were found to cross-react with reticulocyte eEF-Ts, suggesting extensive structural homology between brine shrimp and rabbit eEF-Ts [22].
  • These acetogenins showed potent bioactivities in the brine shrimp lethality test (BST) and among six human solid tumor cell lines with notable selectivity for the prostate (PC-3) and the pancreatic (MIA PaCa-2) cell lines at 10-100 times the potency of adriamycin [23].
  • Compound 1 was highly active in the brine shrimp test and showed significant inhibitory activity on DNA, RNA, and protein synthesis in HeLa and HL-60 cell lines [24].
  • 1 showed potent cytotoxicities in the brine shrimp lethality test (BST) and among six human solid tumor cell lines with notable selectivity for the pancreatic cell line (PaCa-2) at about 1,000 times the potency of adriamycin [25].
 

Associations of Artemia with chemical compounds

 

Gene context of Artemia

  • Purified ribosomal proteins together with specific rabbit antisera were used to identify the two smaller rRNP antigens as the acidic phosphoproteins of the large ribosomal subunit, designated P1/P2(L40/L41) (rat), eL7/eL12 (Artemia, brine shrimp), and A1/A2 (yeast) [30].
  • Similar sequences have also been reported in a yeast nucleolar protein (SSB-1) and several hnRNP proteins (rat A1 and brine shrimp GRP33) [31].
  • Gene expression of trehalase during post-dormant development of the brine shrimp, Artemia: comparison of the two species [32].
  • These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress [33].
  • Molecular cloning of the Na,K-ATPase alpha-subunit in developing brine shrimp and sequence comparison with higher organisms [34].
 

Analytical, diagnostic and therapeutic context of Artemia

References

  1. Isolation and characterization of two acidic proteins of 60s ribosomes from Artemia salina cysts. Möller, W., Slobin, L.I., Amons, R., Richter, D. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  2. Yaequinolones J1 and J2, novel insecticidal antibiotics from Penicillium sp. FKI-2140. Uchida, R., Imasato, R., Shiomi, K., Tomoda, H., Omura, S. Org. Lett. (2005) [Pubmed]
  3. Ciguatera I: Brine shrimp (Artemia salina L.) larval assay for ciguatera toxins. Granade, H.R., Cheng, P.C., Doorenbos, N.J. Journal of pharmaceutical sciences. (1976) [Pubmed]
  4. A butyrylcholinesterase in the early development of the brine shrimp (Artemia salina) larvae: a target for phthalate ester embryotoxicity? Acey, R.A., Bailey, S., Healy, P., Jo, C., Unger, T.F., Hudson, R.A. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  5. Bacterial enteritis and the development of the larval digestive tract in olive flounder, Paralichthys olivaceus (Temminck & Schlegel). Kim, D.H., Han, H.J., Kim, S.M., Lee, D.C., Park, S.I. J. Fish Dis. (2004) [Pubmed]
  6. The primary structure of elongation factor EF-1 alpha from the brine shrimp Artemia. van Hemert, F.J., Amons, R., Pluijms, W.J., van Ormondt, H., Möller, W. EMBO J. (1984) [Pubmed]
  7. Human acidic ribosomal phosphoproteins P0, P1, and P2: analysis of cDNA clones, in vitro synthesis, and assembly. Rich, B.E., Steitz, J.A. Mol. Cell. Biol. (1987) [Pubmed]
  8. Genomic organization and developmental pattern of expression of the engrailed gene from the brine shrimp Artemia. Manzanares, M., Marco, R., Garesse, R. Development (1993) [Pubmed]
  9. Cloning and expression of a novel, highly truncated phosphoinositide-specific phospholipase C cDNA from embryos of the brine shrimp, Artemia. Su, X., Chen, F., Hokin, L.E. J. Biol. Chem. (1994) [Pubmed]
  10. Tyrosine phosphorylation of a M(r) 38,000 A/B-type hnRNP protein selectively modulates its RNA binding. Pype, S., Slegers, H., Moens, L., Merlevede, W., Goris, J. J. Biol. Chem. (1994) [Pubmed]
  11. Bioactive pyridoacridine alkaloids from the micronesian sponge Oceanapia sp. Eder, C., Schupp, P., Proksch, P., Wray, V., Steube, K., Müller, C.E., Frobenius, W., Herderich, M., van Soest, R.W. J. Nat. Prod. (1998) [Pubmed]
  12. Lyngbyabellin B, a toxic and antifungal secondary metabolite from the marine cyanobacterium Lyngbya majuscula. Milligan, K.E., Marquez, B.L., Williamson, R.T., Gerwick, W.H. J. Nat. Prod. (2000) [Pubmed]
  13. The use of the chicken embryo screening test and brine shrimp (Artemia salina) bioassays to assess the toxicity of fumonisin B1 mycotoxin. Hlywka, J.J., Beck, M.M., Bullerman, L.B. Food Chem. Toxicol. (1997) [Pubmed]
  14. Toxicity of lapachol and isolapachol and their potassium salts against Biomphalaria glabrata, Schistosoma mansoni cercariae, Artemia salina and Tilapia nilotica. Lima, N.M., dos Santos, A.F., Porfírio, Z., Goulart, M.O., Sant'Ana, A.E. Acta Trop. (2002) [Pubmed]
  15. Biological screening of rain forest plot trees from Palawan Island (Philippines). Horgen, F.D., Edrada, R.A., de los Reyes, G., Agcaoili, F., Madulid, D.A., Wongpanich, V., Angerhofer, C.K., Pezzuto, J.M., Soejarto, D.D., Farnsworth, N.R. Phytomedicine (2001) [Pubmed]
  16. mRNA methylation and protein synthesis in extracts from embryos of brine shrimp, Artemia salina. Muthukrishnan, S., Filipowicz, W., Sierra, J.M., Both, G.W., Shatkin, A.J., Ochoa, S. J. Biol. Chem. (1975) [Pubmed]
  17. Isolation of a cDNA encoding a putative SPARC from the brine shrimp, Artemia franciscana. Tanaka, S., Nambu, F., Nambu, Z. Gene (2001) [Pubmed]
  18. Structure-activity relationship of grayanotoxin derivatives using a tetrodotoxin-antagonized spasmodic response of brine shrimp larvae (Artemia salina). Kinghorn, A.D., Jawad, F.H., Doorenbos, N.J. Toxicon (1978) [Pubmed]
  19. Methods for transport and long-term maintenance of spiny dogfish sharks. Jones, R.T., Hudson, E.A., Andrews, J.C. Lab. Anim. Sci. (1983) [Pubmed]
  20. Preliminary evaluation of cytotoxic properties of Raphia hookeri fruit mesocarp. Obuotor, E.M., Onajobi, F.D. Fitoterapia (2000) [Pubmed]
  21. Bio-active compounds from Psychotria camponutans. Solis, P.N., Lang'at, C., Gupta, M.P., Kirby, G.C., Warhusrst, D.C., Phillipson, J.D. Planta Med. (1995) [Pubmed]
  22. Eucaryotic elongation factors Ts is an integral component of rabbit reticulocyte elongation factor 1. Slobin, L.I. Eur. J. Biochem. (1979) [Pubmed]
  23. Asitrocin, (2,4)-cis- and trans-asitrocinones: novel bioactive mono-tetrahydrofuran acetogenins from Asimina triloba seeds. Kim, E.J., Tian, F., Woo, M.H. J. Nat. Prod. (2000) [Pubmed]
  24. A bioactive tetraprenylphenol from Lactarius lignyotus. Vidari, G., Vita-Finzi, P., Zanocchi, A.M., Noy, G.P. J. Nat. Prod. (1995) [Pubmed]
  25. cis-Annonacin and (2,4)-cis-and trans-isoannonacins: cytotoxic monotetrahydrofuran annonaceous acetogenins from the seeds of Annona cherimolia. Woo, M.H., Chung, S.O., Kim, D.H. Arch. Pharm. Res. (1999) [Pubmed]
  26. Solubilization and purification of Artemia salina (Na,K)-activated ATPase and NH2-terminal amino acid sequence of its larger subunit. Morohashi, M., Kawamura, M. J. Biol. Chem. (1984) [Pubmed]
  27. The presence of guanosine 5'-diphospho-5'-guanosine and guanosine 5'-triphospho-5'-adenosine in brine shrimp embryos. Gilmour, S.J., Warner, A.H. J. Biol. Chem. (1978) [Pubmed]
  28. Regulation of Na,K-ATPase biosynthesis in developing Artemia salina. Fisher, J.A., Baxter-Lowe, L.A., Hokin, L.E. J. Biol. Chem. (1986) [Pubmed]
  29. The biosynthesis of crustacean chitin by a microsomal enzyme from larval brine shrimp. Horst, M.N. J. Biol. Chem. (1981) [Pubmed]
  30. Identification of ribosomal protein autoantigens. Francoeur, A.M., Peebles, C.L., Heckman, K.J., Lee, J.C., Tan, E.M. J. Immunol. (1985) [Pubmed]
  31. The nucleolar protein, B-36, contains a glycine and dimethylarginine-rich sequence conserved in several other nuclear RNA-binding proteins. Christensen, M.E., Fuxa, K.P. Biochem. Biophys. Res. Commun. (1988) [Pubmed]
  32. Gene expression of trehalase during post-dormant development of the brine shrimp, Artemia: comparison of the two species. Nambu, Z., Tanaka, S., Nambu, F. J. UOEH (1997) [Pubmed]
  33. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. Mykles, D.L. Int. Rev. Cytol. (1998) [Pubmed]
  34. Molecular cloning of the Na,K-ATPase alpha-subunit in developing brine shrimp and sequence comparison with higher organisms. Baxter-Lowe, L.A., Guo, J.Z., Bergstrom, E.E., Hokin, L.E. FEBS Lett. (1989) [Pubmed]
  35. Macrocyclic trichothecene toxins produced by Stachybotrys atra strains isolated in Middle Europe. Bata, A., Harrach, B., Ujszászi, K., Kis-Tamás, A., Lásztity, R. Appl. Environ. Microbiol. (1985) [Pubmed]
  36. A procaryotic intracellular symbiont of the Great Salt Lake brine shrimp Artemia salina (L.). Post, F.J., Youssef, N.N. Can. J. Microbiol. (1977) [Pubmed]
  37. Antennular sensilla of the brine shrimp, Artemia salina. Tyson, G.E., Sullivan, M.L. Biol. Bull. (1979) [Pubmed]
  38. Morphology of isolated crustacean larval salt glands. Lowy, R.J., Conte, F.P. Am. J. Physiol. (1985) [Pubmed]
  39. Biological and chemical study of paico (Chenopodium chilense, Chenopodiaceae). García, R., Lemus, I., Rivera, P., Erazo, S. Journal of ethnopharmacology. (1997) [Pubmed]
 
WikiGenes - Universities