The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

POBN     (1-oxidopyridin-4- ylidene)methyl-oxo-tert...

Synonyms: CHEMBL124087, AG-G-52492, P9271_SIGMA, ANW-41485, AC1L3NZM, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of EINECS 266-512-3


High impact information on EINECS 266-512-3


Biological context of EINECS 266-512-3


Anatomical context of EINECS 266-512-3


Associations of EINECS 266-512-3 with other chemical compounds


Gene context of EINECS 266-512-3


Analytical, diagnostic and therapeutic context of EINECS 266-512-3


  1. The effect of amflutizole, a xanthine oxidase inhibitor, on ischemia-evoked purine release and free radical formation in the rat cerebral cortex. O'Regan, M.H., Smith-Barbour, M., Perkins, L.M., Cao, X., Phillis, J.W. Neuropharmacology (1994) [Pubmed]
  2. Amflutizole, a xanthine oxidase inhibitor, inhibits free radical generation in the ischemic/reperfused rat cerebral cortex. Phillis, J.W., Sen, S., Cao, X. Neurosci. Lett. (1994) [Pubmed]
  3. EPR evidence of hydroxyl radical generation as an initiator of lipid peroxidation in amyloid beta-protein-stimulated PC12 cells. Hayashi, Y., Ueda, Y., Nakajima, A., Mitsuyama, Y. Brain Res. (2004) [Pubmed]
  4. Free radical production requires both inducible nitric oxide synthase and xanthine oxidase in LPS-treated skin. Nakai, K., Kadiiska, M.B., Jiang, J.J., Stadler, K., Mason, R.P. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  5. Sensitivity of K562 and HL-60 cells to edelfosine, an ether lipid drug, correlates with production of reactive oxygen species. Wagner, B.A., Buettner, G.R., Oberley, L.W., Burns, C.P. Cancer Res. (1998) [Pubmed]
  6. Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. Kotamraju, S., Konorev, E.A., Joseph, J., Kalyanaraman, B. J. Biol. Chem. (2000) [Pubmed]
  7. Myeloperoxidase is involved in H2O2-induced apoptosis of HL-60 human leukemia cells. Wagner, B.A., Buettner, G.R., Oberley, L.W., Darby, C.J., Burns, C.P. J. Biol. Chem. (2000) [Pubmed]
  8. Sustained formation of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone radical adducts in mouse liver by peroxisome proliferators is dependent upon peroxisome proliferator-activated receptor-alpha, but not NADPH oxidase. Woods, C.G., Burns, A.M., Maki, A., Bradford, B.U., Cunningham, M.L., Connor, H.D., Kadiiska, M.B., Mason, R.P., Peters, J.M., Rusyn, I. Free Radic. Biol. Med. (2007) [Pubmed]
  9. Detection of lipid radicals using EPR. Venkataraman, S., Schafer, F.Q., Buettner, G.R. Antioxid. Redox Signal. (2004) [Pubmed]
  10. ESR investigation of the oxidative damage in lungs caused by asbestos and air pollution particles. Kadiiska, M.B., Ghio, A.J., Mason, R.P. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. (2004) [Pubmed]
  11. Cell fatty acid composition affects free radical formation during lipid peroxidation. North, J.A., Spector, A.A., Buettner, G.R. Am. J. Physiol. (1994) [Pubmed]
  12. Reexamination of the microsomal transformation of N-hydroxynorcocaine to norcocaine nitroxide. Lloyd, R.V., Shuster, L., Mason, R.P. Mol. Pharmacol. (1993) [Pubmed]
  13. EPR study of antioxidant activity of the iron chelators pyoverdin and hydroxypyrid-4-one in iron-loaded hepatocyte culture: comparison with that of desferrioxamine. Morel, I., Sergent, O., Cogrel, P., Lescoat, G., Pasdeloup, N., Brissot, P., Cillard, P., Cillard, J. Free Radic. Biol. Med. (1995) [Pubmed]
  14. Ethanol-derived immunoreactive species formed by free radical mechanisms. Moncada, C., Torres, V., Varghese, G., Albano, E., Israel, Y. Mol. Pharmacol. (1994) [Pubmed]
  15. Polyunsaturated fatty acids increase lipid radical formation induced by oxidant stress in endothelial cells. Alexander-North, L.S., North, J.A., Kiminyo, K.P., Buettner, G.R., Spector, A.A. J. Lipid Res. (1994) [Pubmed]
  16. alpha-Phenyl-tert-butyl-nitrone (PBN) attenuates hydroxyl radical production during ischemia-reperfusion injury of rat brain: an EPR study. Sen, S., Phillis, J.W. Free Radic. Res. Commun. (1993) [Pubmed]
  17. DNA methylation by tert-butyl hydroperoxide-iron (II). Hix, S., Morais, M.d.a. .S., Augusto, O. Free Radic. Biol. Med. (1995) [Pubmed]
  18. Carbon-centered free radical formation during the metabolism of hydrazine derivatives by neutrophils. Gamberini, M., Leite, L.C. Biochem. Pharmacol. (1993) [Pubmed]
  19. Methylation of RNA purine bases by methyl radicals. Kang, J.O., Gallagher, K.S., Cohen, G. Arch. Biochem. Biophys. (1993) [Pubmed]
  20. Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study. Gunther, M.R., Hanna, P.M., Mason, R.P., Cohen, M.S. Arch. Biochem. Biophys. (1995) [Pubmed]
  21. ESR evidence for superoxide, hydroxyl radicals and singlet oxygen produced from hydrogen peroxide and nickel(II) complex of glycylglycyl-L-histidine. Inoue, S., Kawanishi, S. Biochem. Biophys. Res. Commun. (1989) [Pubmed]
  22. Fatty acid radical formation in rats administered oxidized fatty acids: in vivo spin trapping investigation. Chamulitrat, W., Jordan, S.J., Mason, R.P. Arch. Biochem. Biophys. (1992) [Pubmed]
  23. Generation of free radicals during decomposition of hydroperoxide in the presence of myeloperoxidase or activated neutrophils. Panasenko, O.M., Chekanov, A.V., Arnhold, J., Sergienko, V.I., Osipov, A.N., Vladimirov, Y.A. Biochemistry Mosc. (2005) [Pubmed]
  24. Phthalates rapidly increase production of reactive oxygen species in vivo: role of Kupffer cells. Rusyn, I., Kadiiska, M.B., Dikalova, A., Kono, H., Yin, M., Tsuchiya, K., Mason, R.P., Peters, J.M., Gonzalez, F.J., Segal, B.H., Holland, S.M., Thurman, R.G. Mol. Pharmacol. (2001) [Pubmed]
  25. Role of free radicals in primary nonfunction of marginal fatty grafts from rats treated acutely with ethanol. Zhong, Z., Connor, H., Stachlewitz, R.F., Frankenberg, M., Mason, R.P., Lemasters, J.J., Thurman, R.G. Mol. Pharmacol. (1997) [Pubmed]
  26. Oxidative stress occurs in perfused rat liver at low oxygen tension by mechanisms involving peroxynitrite. Arteel, G.E., Kadiiska, M.B., Rusyn, I., Bradford, B.U., Mason, R.P., Raleigh, J.A., Thurman, R.G. Mol. Pharmacol. (1999) [Pubmed]
WikiGenes - Universities