The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

glnA  -  glutamine synthetase

Escherichia coli CFT073

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of glnA

 

High impact information on glnA

  • Alfalfa NADH-dependent glutamate synthase (NADH-GOGAT), together with glutamine synthetase, plays a central role in the assimilation of symbiotically fixed nitrogen into amino acids in root nodules [6].
  • Furthermore, the ammonia-enhanced GS gene expression in L. corniculatus is due to an increase in transcription [7].
  • A full-length cDNA clone encoding cytosolic glutamine synthetase (GS), expressed in roots and root nodules of soybean, was isolated by direct complementation of an Escherichia coli gln A- mutant [7].
  • However, the pH profiles of tyrosine nitration in GS and BSA are not the same [8].
  • The ability of peroxynitrite to modify amino acid residues in glutamine synthetase (GS) and BSA is greatly influenced by pH and CO2 [8].
 

Chemical compound and disease context of glnA

 

Biological context of glnA

  • To regulate the glnA promoter, NtrC binds to sites that have the properties of transcriptional enhancers: the sites will function far from the promoter and in an orientation-independent fashion [3].
  • In vivo "footprints" of the glnA regulatory region under activating conditions demonstrate that the three most upstream activator sequences bind the protein NRI in the cell [14].
  • The DNA template was a 726 bp linear fragment with two NtrC binding sites located at the end and about 460 bp away from the RNAP x sigma 54 glnA promoter [15].
  • Scanning force microscopy (SFM) was used to visualize complexes of Escherichia coli RNA polymerase.sigma54 (RNAP.sigma54) and a 1036 base-pair linear DNA fragment containing the glnA promoter [16].
  • Scanning force microscopy (SFM) has been used to study transcriptional activation of Escherichia coli RNA polymerase x sigma 54 (RNAP x sigma 54) at the glnA promoter by the constitutive mutant NtrC(D54E,S160F) of the NtrC Protein (nitrogen regulatory protein C) [15].
 

Anatomical context of glnA

  • Surprisingly, about 40% of the plastid GS in nodules occurred in the non-processed precursor form (preGS2) [17].
  • DNA encoding the N-terminal 415 residues of the human thyrotrophin receptor (predicted to code for the large extracellular region) was introduced into Chinese hamster ovary (CHO) cells using the glutamine synthetase/cytomegalovirus amplifiable expression system, and into E. coli using the pGEX-3X expression vector [18].
  • Both the kinetics and the extent of glutamine synthetase inactivation differ when neutrophils are stimulated with phorbol esters compared with formylated peptides [19].
  • Also, if endogenous catalase is inhibited by azide, rabbit liver microsomes catalyze the inactivation of glutamine synthetase [20].
  • Expression of GS in E. coli under transcriptional regulation of T5 promoter yielded an insoluble protein aggregating to form inclusion bodies [21].
 

Associations of glnA with chemical compounds

  • An alternative pathway involves the combined activities of glutamine synthetase, which aminates glutamate to form glutamine, and glutamate synthase, which transfers the amide group of glutamine to 2-oxoglutarate to yield two molecules of glutamate [22].
  • The 2-kbp fragment restored glutamine-independent growth and ammonia repression of nitrogenase, indicating that in R. capsulata, production of the signal for nitrogen repression of nif depends on the activity of the glnA gene [23].
  • A deletion introduced at the binding site of the NtcA regulatory protein abolished derepression of the glnA promoter during growth in nitrate and under nitrogen starvation [24].
  • Isotopic labelling experiments with 15N-labelled ammonium sulfate demonstrated that wild-type Eh1087 incorporated 15N into griseoluteic acid more readily than the glnA mutant Eh7 [25].
  • With glutamine as nitrogen source, high levels of glnA and glnK expression were obtained when glucose was used as carbon source, but expression was strongly decreased when the cells were grown with poor carbon sources or when cAMP was present [26].
 

Other interactions of glnA

  • In Escherichia coli, the glnA and glnG genes are transcribed in the same direction [27].
  • The nac enhancer, consisting of a single high-affinity NRI-binding site and an adjacent site with low affinity for NRI, was less efficient in stimulating transcription than was the glnA enhancer, which consists of two adjacent high-affinity NRI-binding sites [28].
 

Analytical, diagnostic and therapeutic context of glnA

References

  1. Plant glutamine synthetase complements a glnA mutation in Escherichia coli. DasSarma, S., Tischer, E., Goodman, H.M. Science (1986) [Pubmed]
  2. Promoters regulated by the glnG (ntrC) and nifA gene products share a heptameric consensus sequence in the -15 region. Ow, D.W., Sundaresan, V., Rothstein, D.M., Brown, S.E., Ausubel, F.M. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  3. DNA-looping and enhancer activity: association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnA promoter. Su, W., Porter, S., Kustu, S., Echols, H. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  4. Studies on Clostridium acetobutylicum glnA promoters and antisense RNA. Janssen, P.J., Jones, D.T., Woods, D.R. Mol. Microbiol. (1990) [Pubmed]
  5. Nitrogen control of the glnN gene that codes for GS type III, the only glutamine synthetase in the cyanobacterium Pseudanabaena sp. PCC 6903. Crespo, J.L., García-Domínguez, M., Florencio, F.J. Mol. Microbiol. (1998) [Pubmed]
  6. Molecular characterization of NADH-dependent glutamate synthase from alfalfa nodules. Gregerson, R.G., Miller, S.S., Twary, S.N., Gantt, J.S., Vance, C.P. Plant Cell (1993) [Pubmed]
  7. Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus. Miao, G.H., Hirel, B., Marsolier, M.C., Ridge, R.W., Verma, D.P. Plant Cell (1991) [Pubmed]
  8. Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. Tien, M., Berlett, B.S., Levine, R.L., Chock, P.B., Stadtman, E.R. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  9. Maize glutamine synthetase cDNAs: isolation by direct genetic selection in Escherichia coli. Snustad, D.P., Hunsperger, J.P., Chereskin, B.M., Messing, J. Genetics (1988) [Pubmed]
  10. Isolation and characterization of a novel glutamine synthetase from Rhizobium meliloti. Shatters, R.G., Liu, Y., Kahn, M.L. J. Biol. Chem. (1993) [Pubmed]
  11. Activation of the glnA, glnK, and nac promoters as Escherichia coli undergoes the transition from nitrogen excess growth to nitrogen starvation. Atkinson, M.R., Blauwkamp, T.A., Bondarenko, V., Studitsky, V., Ninfa, A.J. J. Bacteriol. (2002) [Pubmed]
  12. Peroxynitrite-mediated nitration of tyrosine residues in Escherichia coli glutamine synthetase mimics adenylylation: relevance to signal transduction. Berlett, B.S., Friguet, B., Yim, M.B., Chock, P.B., Stadtman, E.R. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  13. Oxidative inactivation of glutamine synthetase subunits. Nakamura, K., Stadtman, E.R. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  14. Probing the Escherichia coli glnALG upstream activation mechanism in vivo. Sasse-Dwight, S., Gralla, J.D. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  15. Transcriptional activation via DNA-looping: visualization of intermediates in the activation pathway of E. coli RNA polymerase x sigma 54 holoenzyme by scanning force microscopy. Rippe, K., Guthold, M., von Hippel, P.H., Bustamante, C. J. Mol. Biol. (1997) [Pubmed]
  16. Scanning force microscopy of Escherichia coli RNA polymerase.sigma54 holoenzyme complexes with DNA in buffer and in air. Schulz, A., Mücke, N., Langowski, J., Rippe, K. J. Mol. Biol. (1998) [Pubmed]
  17. Expression of the plastid-located glutamine synthetase of Medicago truncatula. Accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids. Melo, P.M., Lima, L.M., Santos, I.M., Carvalho, H.G., Cullimore, J.V. Plant Physiol. (2003) [Pubmed]
  18. Characterization of the extracellular region of the human thyrotrophin receptor expressed as a recombinant protein. Harfst, E., Johnstone, A.P., Nussey, S.S. J. Mol. Endocrinol. (1992) [Pubmed]
  19. Inactivation of enzymes and oxidative modification of proteins by stimulated neutrophils. Oliver, C.N. Arch. Biochem. Biophys. (1987) [Pubmed]
  20. Inactivation of glutamine synthetase by a purified rabbit liver microsomal cytochrome P-450 system. Nakamura, K., Oliver, C., Stadtman, E.R. Arch. Biochem. Biophys. (1985) [Pubmed]
  21. Cloning and expression of mycobacterial glutamine synthetase gene in Escherichia coli. Singh, J., Joshi, M.C., Bhatnagar, R. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  22. Molecular cloning and characterization of a large subunit of Salmonella typhimurium glutamate synthase (GOGAT) gene in Escherichia coli. Chung, T.W., Lee, D.I., Kim, D.S., Jin, U.H., Park, C., Kim, J.G., Kim, M.G., Ha, S.D., Kim, K.S., Lee, K.H., Kim, K.Y., Chung, D.H., Kim, C.H. J. Microbiol. (2006) [Pubmed]
  23. The wild-type gene for glutamine synthetase restores ammonia control of nitrogen fixation to Gln- (glnA) mutants of Rhodopseudomonas capsulata. Scolnik, P.A., Virosco, J., Haselkorn, R. J. Bacteriol. (1983) [Pubmed]
  24. Characterization of cis elements that regulate the expression of glnA in Synechococcus sp. strain PCC 7942. Cohen-Kupiec, R., Zilberstein, A., Gurevitz, M. J. Bacteriol. (1995) [Pubmed]
  25. Role of glutamine synthetase in phenazine antibiotic production by Pantoea agglomerans Eh1087. Galbraith, M.D., Giddens, S.R., Mahanty, H.K., Clark, B. Can. J. Microbiol. (2004) [Pubmed]
  26. Carbon-source-dependent nitrogen regulation in Escherichia coli is mediated through glutamine-dependent GlnB signalling. Maheswaran, M., Forchhammer, K. Microbiology (Reading, Engl.) (2003) [Pubmed]
  27. General method, using Mu-Mud1 dilysogens, to determine the direction of transcription of and generate deletions in the glnA region of Escherichia coli. MacNeil, D. J. Bacteriol. (1981) [Pubmed]
  28. Activation of transcription initiation from the nac promoter of Klebsiella aerogenes. Feng, J., Goss, T.J., Bender, R.A., Ninfa, A.J. J. Bacteriol. (1995) [Pubmed]
  29. Glutamine synthetase gene expression at elevated hydrostatic pressure in a deep-sea piezophilic Shewanella violacea. Ikegami, A., Nakasone, K., Kato, C., Nakamura, Y., Yoshikawa, I., Usami, R., Horikoshi, K. FEMS Microbiol. Lett. (2000) [Pubmed]
  30. Localization of the site of adenylylation of glutamine synthetase by electron microscopy of an enzyme-antibody complex. Frink, R.J., Eisenberg, D., Glitz, D.G. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  31. Metal-dependent self-assembly of protein tubes from Escherichia coli glutamine synthetase. Cu(2+) EPR studies of the ligation and stoichiometry of intermolecular metal binding sites. Schurke, P., Freeman, J.C., Dabrowski, M.J., Atkins, W.M. J. Biol. Chem. (1999) [Pubmed]
  32. The rates of commitment to renaturation of rhodanese and glutamine synthetase in the presence of the groE chaperonins. Fisher, M.T., Yuan, X. J. Biol. Chem. (1994) [Pubmed]
 
WikiGenes - Universities