The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Bmpr1a  -  bone morphogenetic protein receptor, type 1A

Mus musculus

Synonyms: 1110037I22Rik, ALK-3, ALK3, AU045487, Activin receptor-like kinase 3, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bmpr1a


High impact information on Bmpr1a

  • These results identify Bmpr1a as a type I receptor for Amh-induced regression of Müllerian ducts [6].
  • Because Bmpr1a is evolutionarily conserved, these findings indicate that a component of the BMP signaling pathway has been co-opted during evolution for male sexual development in amniotes [6].
  • Requirement of Bmpr1a for Müllerian duct regression during male sexual development [6].
  • In this study, we show that a targeted null mutation of Ecsit, encoding a signaling intermediate of the Toll pathway, leads to reduced cell proliferation, altered epiblast patterning, impairment of mesoderm formation, and embryonic lethality at embryonic day 7.5 (E7.5), phenotypes that mimic the Bmp receptor type1a (Bmpr1a) null mutant [7].
  • By generation of compound mutants, we also show that beta-catenin acts downstream of the BMP receptor IA in AER induction, but upstream or parallel in dorsal-ventral patterning [8].

Biological context of Bmpr1a


Anatomical context of Bmpr1a

  • To further define the requirement for BMP signaling in the differentiation of blood, endothelial and smooth muscle cells from FLK1(+) mesoderm, we inactivated Alk3 (Bmpr1a) in FLK1(+) cells by crossing Alk3(floxed/floxed) and Flk1(+/Cre)Alk3(+/floxed) mice [13].
  • We have ablated Bmpr1a specifically in the neural crest, beginning at the five-somite stage [14].
  • Mouse embryos lacking Bmpr1a fail to gastrulate, complicating studies on the requirements for BMP signaling in germ layer development [15].
  • The Type I Bone morphogenetic protein receptor gene (Bmpr/Tfr-11/Brk-1) is expressed at low levels in the epithelium and in the distal mesenchyme [16].
  • We generated a conditional knockout of the gene encoding BMPR-IA (Bmpr) that disrupted BMP signaling in the limb ectoderm [17].

Associations of Bmpr1a with chemical compounds


Physical interactions of Bmpr1a


Regulatory relationships of Bmpr1a


Other interactions of Bmpr1a

  • In the present study, we examine the effect of BMP4 on the development of metanephric and periureteral mesenchymal cells, which express the BMP type I receptor gene, Bmpr1a (Alk3) [23].
  • Immunolabeling of pituitary sections revealed the presence of BMPR-IA (ALK-3) and BMPR-II in gonadotrope cells [24].
  • By contrast, ALK-2 and ALK-3 immunostainings in E14 were barely detectable [25].
  • ALK-3 and ALK-5 mRNAs first decreased on day 14 and increased again on day 21 [26].
  • Whereas mice deficient in type 1 receptors Bmpr1a or Bmpr1b in cartilage are able to form intact cartilaginous elements, double mutants develop a severe generalized chondrodysplasia [9].

Analytical, diagnostic and therapeutic context of Bmpr1a


  1. Regulation of outgrowth and apoptosis for the terminal appendage: external genitalia development by concerted actions of BMP signaling [corrected]. Suzuki, K., Bachiller, D., Chen, Y.P., Kamikawa, M., Ogi, H., Haraguchi, R., Ogino, Y., Minami, Y., Mishina, Y., Ahn, K., Crenshaw, E.B., Yamada, G. Development (2003) [Pubmed]
  2. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. Mishina, Y., Starbuck, M.W., Gentile, M.A., Fukuda, T., Kasparcova, V., Seedor, J.G., Hanks, M.C., Amling, M., Pinero, G.J., Harada, S., Behringer, R.R. J. Biol. Chem. (2004) [Pubmed]
  3. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. He, X.C., Zhang, J., Tong, W.G., Tawfik, O., Ross, J., Scoville, D.H., Tian, Q., Zeng, X., He, X., Wiedemann, L.M., Mishina, Y., Li, L. Nat. Genet. (2004) [Pubmed]
  4. Distinct developmental programs require different levels of Bmp signaling during mouse retinal development. Murali, D., Yoshikawa, S., Corrigan, R.R., Plas, D.J., Crair, M.C., Oliver, G., Lyons, K.M., Mishina, Y., Furuta, Y. Development (2005) [Pubmed]
  5. Enhanced expression of type I receptors for bone morphogenetic proteins during bone formation. Ishidou, Y., Kitajima, I., Obama, H., Maruyama, I., Murata, F., Imamura, T., Yamada, N., ten Dijke, P., Miyazono, K., Sakou, T. J. Bone Miner. Res. (1995) [Pubmed]
  6. Requirement of Bmpr1a for Müllerian duct regression during male sexual development. Jamin, S.P., Arango, N.A., Mishina, Y., Hanks, M.C., Behringer, R.R. Nat. Genet. (2002) [Pubmed]
  7. Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis. Xiao, C., Shim, J.H., Klüppel, M., Zhang, S.S., Dong, C., Flavell, R.A., Fu, X.Y., Wrana, J.L., Hogan, B.L., Ghosh, S. Genes Dev. (2003) [Pubmed]
  8. Genetic interaction between Wnt/beta-catenin and BMP receptor signaling during formation of the AER and the dorsal-ventral axis in the limb. Soshnikova, N., Zechner, D., Huelsken, J., Mishina, Y., Behringer, R.R., Taketo, M.M., Crenshaw, E.B., Birchmeier, W. Genes Dev. (2003) [Pubmed]
  9. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Yoon, B.S., Ovchinnikov, D.A., Yoshii, I., Mishina, Y., Behringer, R.R., Lyons, K.M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  10. Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Andl, T., Ahn, K., Kairo, A., Chu, E.Y., Wine-Lee, L., Reddy, S.T., Croft, N.J., Cebra-Thomas, J.A., Metzger, D., Chambon, P., Lyons, K.M., Mishina, Y., Seykora, J.T., Crenshaw, E.B., Millar, S.E. Development (2004) [Pubmed]
  11. BMP receptor signaling is required for postnatal maintenance of articular cartilage. Rountree, R.B., Schoor, M., Chen, H., Marks, M.E., Harley, V., Mishina, Y., Kingsley, D.M. PLoS Biol. (2004) [Pubmed]
  12. Osteogenic differentiation of mouse adipose-derived adult stromal cells requires retinoic acid and bone morphogenetic protein receptor type IB signaling. Wan, D.C., Shi, Y.Y., Nacamuli, R.P., Quarto, N., Lyons, K.M., Longaker, M.T. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  13. Bone morphogenetic protein receptor 1A signaling is dispensable for hematopoietic development but essential for vessel and atrioventricular endocardial cushion formation. Park, C., Lavine, K., Mishina, Y., Deng, C.X., Ornitz, D.M., Choi, K. Development (2006) [Pubmed]
  14. BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium. Stottmann, R.W., Choi, M., Mishina, Y., Meyers, E.N., Klingensmith, J. Development (2004) [Pubmed]
  15. BMP receptor IA is required in the mammalian embryo for endodermal morphogenesis and ectodermal patterning. Davis, S., Miura, S., Hill, C., Mishina, Y., Klingensmith, J. Dev. Biol. (2004) [Pubmed]
  16. Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Bellusci, S., Henderson, R., Winnier, G., Oikawa, T., Hogan, B.L. Development (1996) [Pubmed]
  17. BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Ahn, K., Mishina, Y., Hanks, M.C., Behringer, R.R., Crenshaw, E.B. Development (2001) [Pubmed]
  18. Analysis of the native murine bone morphogenetic protein serine threonine kinase type I receptor (ALK-3). Wu, X., Robinson, C.E., Fong, H.W., Gimble, J.M. J. Cell. Physiol. (1996) [Pubmed]
  19. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Qi, X., Li, T.G., Hao, J., Hu, J., Wang, J., Simmons, H., Miura, S., Mishina, Y., Zhao, G.Q. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  20. Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. Otsuka, E., Yamaguchi, A., Hirose, S., Hagiwara, H. Am. J. Physiol. (1999) [Pubmed]
  21. A single residue of GDF-5 defines binding specificity to BMP receptor IB. Nickel, J., Kotzsch, A., Sebald, W., Mueller, T.D. J. Mol. Biol. (2005) [Pubmed]
  22. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. Kobielak, K., Pasolli, H.A., Alonso, L., Polak, L., Fuchs, E. J. Cell Biol. (2003) [Pubmed]
  23. Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Miyazaki, Y., Oshima, K., Fogo, A., Ichikawa, I. Kidney Int. (2003) [Pubmed]
  24. BMP-4 inhibits follicle-stimulating hormone secretion in ewe pituitary. Faure, M.O., Nicol, L., Fabre, S., Fontaine, J., Mohoric, N., McNeilly, A., Taragnat, C. J. Endocrinol. (2005) [Pubmed]
  25. Correlation between ALK-6 (BMPR-IB) distribution and responsiveness to osteogenic protein-1 (BMP-7) in embryonic mouse bone rudiments. Haaijman, A., Burger, E.H., Goei, S.W., Nelles, L., ten Dijke, P., Huylebroeck, D., Bronckers, A.L. Growth Factors (2000) [Pubmed]
  26. Temporal changes in expression of transforming growth factor-beta superfamily members and their receptors during bovine preodontoblast differentiation in vitro. Toyono, T., Nakashima, M., Kuhara, S., Akamine, A. Arch. Oral Biol. (1997) [Pubmed]
  27. Distinct spatial and temporal expression patterns of two type I receptors for bone morphogenetic proteins during mouse embryogenesis. Dewulf, N., Verschueren, K., Lonnoy, O., Morén, A., Grimsby, S., Vande Spiegle, K., Miyazono, K., Huylebroeck, D., Ten Dijke, P. Endocrinology (1995) [Pubmed]
  28. A kinase domain-truncated type I receptor blocks bone morphogenetic protein-2-induced signal transduction in C2C12 myoblasts. Namiki, M., Akiyama, S., Katagiri, T., Suzuki, A., Ueno, N., Yamaji, N., Rosen, V., Wozney, J.M., Suda, T. J. Biol. Chem. (1997) [Pubmed]
  29. BMP and activin receptor expression in lens development. de Iongh, R.U., Chen, Y., Kokkinos, M.I., McAvoy, J.W. Mol. Vis. (2004) [Pubmed]
WikiGenes - Universities