The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Vamp1  -  vesicle-associated membrane protein 1

Mus musculus

Synonyms: Syb-1, Syb1, Synaptobrevin-1, VAMP-1, Vesicle-associated membrane protein 1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Vamp1

 

High impact information on Vamp1

 

Chemical compound and disease context of Vamp1

  • Tetanus toxin added to neuronal cultures at day 2 in vitro cleaved synaptobrevin and inhibited regulated GABA secretion during the whole cultivation time [8].
  • In contrast to control cultures, tetanus toxin added to fumonisin B(1)-treated cultures does not block potassium-stimulated glycine release, inhibit activity-dependent uptake of FM1-43, or abolish immunoreactivity for vesicle-associated membrane protein, the toxin substrate [9].
 

Biological context of Vamp1

 

Anatomical context of Vamp1

 

Associations of Vamp1 with chemical compounds

  • We show that in synaptosomes treated with three stimuli that induce exocytosis (a depolarizing K(+) solution, the excitatory neurotoxin alpha-latrotoxin, or the Ca(2+)-ionophore ionomycin), the homo- and heteromultimerization of synaptophysin and synaptobrevin is increased up to 6-fold [16].
  • We found that substituting glutamine for arginine in the zero-layer of the SNARE motif did not significantly impair synaptobrevin-dependent exocytosis, whereas insertion of 12 or 24 residues between the SNARE motif and transmembrane region abolished the ability of synaptobrevin to mediate Ca2+-evoked exocytosis [17].
  • Alternatively, treatment with cholesterol up-regulated the synaptophysin/synaptobrevin interaction in these cultures [18].
  • The colocalization of Sbr, or its homologue cellubrevin (Cbr), in the majority of the glucose transporter-isotype 4 (GLUT4)-containing vesicles from adipocytes implicates their involvement in insulin-stimulated glucose uptake, which results in part from enhanced fusion of these vesicles with the plasmalemma [19].
  • Cleavage of the other SNAREs (synaptobrevin with Botx/D or SNAP-25 with Botx/A) failed to affect the inhibitory action of adenosine [20].
 

Physical interactions of Vamp1

  • Here we used purified full-length and truncated SNARE proteins and a gel shift assay to show that the action of complexin on SNARE complex depends strictly on the transmembrane regions of syntaxin and synaptobrevin [21].
 

Regulatory relationships of Vamp1

 

Other interactions of Vamp1

 

Analytical, diagnostic and therapeutic context of Vamp1

  • METHODS: Single- and double-labeling immunocytochemistry was used to investigate the distribution of the synaptic VAMP isoforms, VAMP-1 and VAMP-2, in the mouse retina [1].
  • BoNT/B was shown by immunoblotting to cause extensive proteolysis of Cbr and Sbr resulting in a significant blockade of the insulin-stimulated translocation of GLUT4 to the plasmalemma [19].

References

  1. Differential distribution of vesicle associated membrane protein isoforms in the mouse retina. Sherry, D.M., Wang, M.M., Frishman, L.J. Mol. Vis. (2003) [Pubmed]
  2. Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. Williamson, L.C., Halpern, J.L., Montecucco, C., Brown, J.E., Neale, E.A. J. Biol. Chem. (1996) [Pubmed]
  3. High sensitivity of mouse neuronal cells to tetanus toxin requires a GPI-anchored protein. Munro, P., Kojima, H., Dupont, J.L., Bossu, J.L., Poulain, B., Boquet, P. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  4. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Sørensen, J.B., Nagy, G., Varoqueaux, F., Nehring, R.B., Brose, N., Wilson, M.C., Neher, E. Cell (2003) [Pubmed]
  5. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Schoch, S., Deák, F., Königstorfer, A., Mozhayeva, M., Sara, Y., Südhof, T.C., Kavalali, E.T. Science (2001) [Pubmed]
  6. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Steinhardt, R.A., Bi, G., Alderton, J.M. Science (1994) [Pubmed]
  7. Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Deák, F., Schoch, S., Liu, X., Südhof, T.C., Kavalali, E.T. Nat. Cell Biol. (2004) [Pubmed]
  8. Synaptobrevin is essential for secretion but not for the development of synaptic processes. Ahnert-Hilger, G., Kutay, U., Chahoud, I., Rapoport, T., Wiedenmann, B. Eur. J. Cell Biol. (1996) [Pubmed]
  9. Neuronal sensitivity to tetanus toxin requires gangliosides. Williamson, L.C., Bateman, K.E., Clifford, J.C., Neale, E.A. J. Biol. Chem. (1999) [Pubmed]
  10. A novel synaptobrevin/VAMP homologous protein (VAMP5) is increased during in vitro myogenesis and present in the plasma membrane. Zeng, Q., Subramaniam, V.N., Wong, S.H., Tang, B.L., Parton, R.G., Rea, S., James, D.E., Hong, W. Mol. Biol. Cell (1998) [Pubmed]
  11. Differential gene expression and functional analysis implicate novel mechanisms in enteric nervous system precursor migration and neuritogenesis. Vohra, B.P., Tsuji, K., Nagashimada, M., Uesaka, T., Wind, D., Fu, M., Armon, J., Enomoto, H., Heuckeroth, R.O. Dev. Biol. (2006) [Pubmed]
  12. Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells. Buxton, P., Zhang, X.M., Walsh, B., Sriratana, A., Schenberg, I., Manickam, E., Rowe, T. Biochem. J. (2003) [Pubmed]
  13. ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages. Niedergang, F., Colucci-Guyon, E., Dubois, T., Raposo, G., Chavrier, P. J. Cell Biol. (2003) [Pubmed]
  14. Syntaxin 4 in 3T3-L1 adipocytes: regulation by insulin and participation in insulin-dependent glucose transport. Volchuk, A., Wang, Q., Ewart, H.S., Liu, Z., He, L., Bennett, M.K., Klip, A. Mol. Biol. Cell (1996) [Pubmed]
  15. Quantification of SNARE protein levels in 3T3-L1 adipocytes: implications for insulin-stimulated glucose transport. Hickson, G.R., Chamberlain, L.H., Maier, V.H., Gould, G.W. Biochem. Biophys. Res. Commun. (2000) [Pubmed]
  16. Stimulus-dependent dynamic homo- and heteromultimerization of synaptobrevin/VAMP and synaptophysin. Khvotchev, M.V., Südhof, T.C. Biochemistry (2004) [Pubmed]
  17. Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion. Deák, F., Shin, O.H., Kavalali, E.T., Südhof, T.C. J. Neurosci. (2006) [Pubmed]
  18. The synaptophysin/synaptobrevin interaction critically depends on the cholesterol content. Mitter, D., Reisinger, C., Hinz, B., Hollmann, S., Yelamanchili, S.V., Treiber-Held, S., Ohm, T.G., Herrmann, A., Ahnert-Hilger, G. J. Neurochem. (2003) [Pubmed]
  19. Botulinum neurotoxin B inhibits insulin-stimulated glucose uptake into 3T3-L1 adipocytes and cleaves cellubrevin unlike type A toxin which failed to proteolyze the SNAP-23 present. Chen, F., Foran, P., Shone, C.C., Foster, K.A., Melling, J., Dolly, J.O. Biochemistry (1997) [Pubmed]
  20. Modulation of calcium currents is eliminated after cleavage of a strategic component of the mammalian secretory apparatus. Silinsky, E.M. J. Physiol. (Lond.) (2005) [Pubmed]
  21. Action of complexin on SNARE complex. Hu, K., Carroll, J., Rickman, C., Davletov, B. J. Biol. Chem. (2002) [Pubmed]
  22. Cleavage of SNAP-25 and VAMP-2 impairs store-operated Ca2+ entry in mouse pancreatic acinar cells. Rosado, J.A., Redondo, P.C., Salido, G.M., Sage, S.O., Pariente, J.A. Am. J. Physiol., Cell Physiol. (2005) [Pubmed]
  23. Molecular evidence for two-stage learning and partial laterality in eyeblink conditioning of mice. Park, J.S., Onodera, T., Nishimura, S., Thompson, R.F., Itohara, S. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
 
WikiGenes - Universities