The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Slc25a1  -  solute carrier family 25 (mitochondrial...

Rattus norvegicus

Synonyms: CTP, Cic, Citrate transport protein, Ctp, Slc20a3, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Slc25a1


High impact information on Slc25a1

  • The tricarboxylate carrier (TCC), also known as citrate carrier, is an integral protein of the mitochondrial inner membrane [1].
  • Hypothyroidism reduces tricarboxylate carrier activity and expression in rat liver mitochondria by reducing nuclear transcription rate and splicing efficiency [1].
  • Hypothyroidism did not influence TCC mRNA stability [1].
  • Furthermore, we found that the ratio of polyadenylated/unpolyadenylated TCC RNA as well as the length of the TCC RNA poly(A) tail were similar in both euthyroid and hypothyroid rats [1].
  • Blocking the tricarboxylate anion exchange carrier with the citrate transport inhibitor 1,2,3-benzenetricarboxylate restores the ability of tumor 3924A mitochondria to respire with pyruvate or citrate [6].

Biological context of Slc25a1


Anatomical context of Slc25a1


Associations of Slc25a1 with chemical compounds


Other interactions of Slc25a1


Analytical, diagnostic and therapeutic context of Slc25a1

  • ELISA tests performed with intact and permeabilized rat-liver mitoplasts showed that both anti-N-terminal and anti-C-terminal antibodies bind only to the cytoplasmic surface of the inner membrane, indicating that both termini of the membrane-bound tricarboxylate carrier are exposed to the mitochondrial intermembrane space [12].
  • Aluminum citrate transport across the blood-brain barrier was assessed in rats by in vivo microdialysis [20].


  1. Hypothyroidism reduces tricarboxylate carrier activity and expression in rat liver mitochondria by reducing nuclear transcription rate and splicing efficiency. Siculella, L., Sabetta, S., Giudetti, A.M., Gnoni, G.V. J. Biol. Chem. (2006) [Pubmed]
  2. Stimulation of renal Na+ dicarboxylate cotransporter 1 by Na+/H+ exchanger regulating factor 2, serum and glucocorticoid inducible kinase isoforms, and protein kinase B. Boehmer, C., Embark, H.M., Bauer, A., Palmada, M., Yun, C.H., Weinman, E.J., Endou, H., Cohen, P., Lahme, S., Bichler, K.H., Lang, F. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  3. Sodium dicarboxylate cotransporter-1 expression in renal tissues and its role in rat experimental nephrolithiasis. He, Y., Chen, X., Yu, Z., Wu, D., Lv, Y., Shi, S., Zhu, H. J. Nephrol. (2004) [Pubmed]
  4. Effect of vitamin D deficiency on D-glucose and citrate transport in rat renal basolateral membrane vesicles. Stio, M., Iantomasi, T., Marraccini, P., Vincenzini, M.T., Treves, C. Biochem. Int. (1991) [Pubmed]
  5. Citrate carrier and lipogenic enzyme activities in lead nitrate-induced proliferative and apoptotic phase in rat liver. Dini, L., Giudetti, A.M., Ruzittu, M., Gnoni, G.V., Zara, V. Biochem. Mol. Biol. Int. (1999) [Pubmed]
  6. Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol. Parlo, R.A., Coleman, P.S. J. Biol. Chem. (1984) [Pubmed]
  7. Different dietary fatty acids have dissimilar effects on activity and gene expression of mitochondrial tricarboxylate carrier in rat liver. Siculella, L., Sabetta, S., Damiano, F., Giudetti, A.M., Gnoni, G.V. FEBS Lett. (2004) [Pubmed]
  8. Molecular toxicology of (-)-erythro-fluorocitrate: selective inhibition of citrate transport in mitochondria and the binding of fluorocitrate to mitochondrial proteins. Kirsten, E., Sharma, M.L., Kun, E. Mol. Pharmacol. (1978) [Pubmed]
  9. Kinetic evidence for the uniport mechanism hypothesis in the mitochondrial tricarboxylate transport system. De Palma, A., Prezioso, G., Scalera, V. J. Bioenerg. Biomembr. (2005) [Pubmed]
  10. Purification of the active mitochondrial tricarboxylate carrier by hydroxylapatite chromatography. Stipani, I., Palmieri, F. FEBS Lett. (1983) [Pubmed]
  11. Biogenesis of rat mitochondrial citrate carrier (CIC): the N-terminal presequence facilitates the solubility of the preprotein but does not act as a targeting signal. Zara, V., Ferramosca, A., Palmisano, I., Palmieri, F., Rassow, J. J. Mol. Biol. (2003) [Pubmed]
  12. The N- and C-termini of the tricarboxylate carrier are exposed to the cytoplasmic side of the inner mitochondrial membrane. Capobianco, L., Bisaccia, F., Michel, A., Sluse, F.E., Palmieri, F. FEBS Lett. (1995) [Pubmed]
  13. Regulation of citrate transport and pyruvate dehydrogenase in rat kidney cortex mitochondria by bicarbonate. Robinson, B.H., Oei, J., Cheema-Dhadli, S., Halperin, M.L. J. Biol. Chem. (1977) [Pubmed]
  14. Endogenous and exogenous citrate transport and release in prostatic preparations: semi-polarized two-dimensional cultures of human PNT2-C2 cells and isolated tubules and segments of rat prostate. Mycielska, M.E., Krasowska, M., Grzywna, Z., Djamgoz, M.B. Prostate (2005) [Pubmed]
  15. Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers. Chen, Z., Lash, L.H. J. Pharmacol. Exp. Ther. (1998) [Pubmed]
  16. The mitochondrial tricarboxylate carrier. Azzi, A., Glerum, M., Koller, R., Mertens, W., Spycher, S. J. Bioenerg. Biomembr. (1993) [Pubmed]
  17. Effect of anthracycline antibiotics on the reconstituted mitochondrial tricarboxylate carrier. Stipani, I., Capalbo, M.I., Zara, V. Biochem. Biophys. Res. Commun. (1989) [Pubmed]
  18. Reversible resistance to the phosphaturic effect of db-cAMP in lithium-treated rats. Angielski, S., Drewnowska, K., Rybczyńska, A., Szczepańska-Konkel, M. Acta physiologica Polonica. (1982) [Pubmed]
  19. Aluminum citrate uptake by immortalized brain endothelial cells: implications for its blood-brain barrier transport. Yokel, R.A., Wilson, M., Harris, W.R., Halestrap, A.P. Brain Res. (2002) [Pubmed]
  20. Aluminum citrate is transported from brain into blood via the monocarboxylic acid transporter located at the blood-brain barrier. Ackley, D.C., Yokel, R.A. Toxicology (1997) [Pubmed]
WikiGenes - Universities