The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Ubi-p63E  -  Ubiquitin-63E

Drosophila melanogaster

Synonyms: CG11624, DmUb, DmUbi-p63E, Dmel\CG11624, Polyubiquitin, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ubi-p63E

  • A common feature of many human neurodegenerative diseases is the accumulation of insoluble ubiquitin-containing protein aggregates in the CNS [1].
  • Parkin, an E3 ubiquitin ligase, has been found to be responsible for autosomal recessive juvenile parkinsonism characterized primarily by selective loss of dopaminergic neurons with subsequent defects in movements [2].
  • In a recent issue of Nature, two independent reports by and show that loss of Drosophila PINK1 leads to defects in mitochondrial function resulting in male sterility, apoptotic muscle degeneration, and minor loss of dopamine neurons that is rescued by overexpression of the ubiquitin E3 ligase, parkin [3].
  • IAPs contain N-terminal baculovirus IAP repeat domains and a C-terminal RING ubiquitin ligase domain [4].
  • TRC8 encodes an E3-ubiquitin ligase disrupted in a family with hereditary renal cell carcinoma (RCC) [5].
 

Psychiatry related information on Ubi-p63E

  • Ubiquitinated tau-positive inclusions have been reported in brains of Alzheimer's disease patients, but involvement of the ubiquitin-dependent proteasomal system in tau degradation remains controversial [6].
 

High impact information on Ubi-p63E

  • Post-translational modification of proteins by the ubiquitin-like molecule SUMO (sumoylation) regulates their subcellular localization and affects their functional properties in vitro, but the physiological function of sumoylation in multicellular organisms is largely unknown [7].
  • A critical mediator of cell-cycle transitions, the anaphase-promoting complex/cyclosome (APC/C), is an E3 ubiquitin ligase [8].
  • Arthrin reacts with an anti-ubiquitin antibody, which demonstrates that its extra mass results from ubiquitin ligation [9].
  • Approximately one in two nucleosomes of the transcribed copia and heat-shock 70 (hsp 70) genes in nonshocked cultured cells contains ubiquitin-H2A (uH2A) semihistone, a covalent conjugate of histone H2A and a small protein, ubiquitin [10].
  • The Archipelago protein binds directly to Cyclin E and probably targets it for ubiquitin-mediated degradation [11].
 

Biological context of Ubi-p63E

 

Anatomical context of Ubi-p63E

  • For example, we discuss (i) advantages?disadvantages of cultured cells, (ii) types of expression vectors and "peptide tags" for recombinant protein production and surveillance, and (iii) standard approaches to determine whether a protein of interest is modified by ubiquitin and degraded by the proteasome [16].
  • Here, we show that Neu is required at the plasma membrane for functional activity and that its RING finger domain acts as an E3 ubiquitin ligase [17].
  • The tail protein is incorporated into the ribosome, and ubiquitin is thought to act as a chaperone [18].
  • Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ) [19].
  • Although devoid of mutant protein, this neurodegeneration exhibits neuronal inclusion bodies that are Hsp70 and ubiquitin positive [20].
 

Associations of Ubi-p63E with chemical compounds

  • DTX proteins have a basic N terminus; a central proline-rich region; and a C-terminal RING finger domain, a motif often found in ubiquitin-protein isopeptide ligases (E3) [21].
  • Furthermore, AIP4-generated polyubiquitin chains are mainly conjugated through lysine 29 of ubiquitin in vivo, indicating a link between this type of chain and lysosomal degradation [22].
  • Normal human ataxin-3--a polyubiquitin binding protein with ubiquitin protease activity--is a striking suppressor of polyglutamine neurodegeneration in vivo [23].
  • The amino acid sequence (2547 residues) of the complete open reading frame of the X gene has 44% identity and 88% similarity to the Drosophila sequence and contains the conserved Cys and His domains characteristic of deubiquitinating enzymes, suggesting its biochemical function may be the hydrolysis of ubiquitin from protein-ubiquitin conjugates [24].
  • Parkin is a ubiquitin-protein isopeptide ligase [25].
 

Physical interactions of Ubi-p63E

 

Regulatory relationships of Ubi-p63E

 

Other interactions of Ubi-p63E

 

Analytical, diagnostic and therapeutic context of Ubi-p63E

References

  1. blue cheese mutations define a novel, conserved gene involved in progressive neural degeneration. Finley, K.D., Edeen, P.T., Cumming, R.C., Mardahl-Dumesnil, M.D., Taylor, B.J., Rodriguez, M.H., Hwang, C.E., Benedetti, M., McKeown, M. J. Neurosci. (2003) [Pubmed]
  2. Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Cha, G.H., Kim, S., Park, J., Lee, E., Kim, M., Lee, S.B., Kim, J.M., Chung, J., Cho, K.S. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  3. Parkin blushed by PINK1. Tan, J.M., Dawson, T.M. Neuron (2006) [Pubmed]
  4. The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers. Huh, J.R., Foe, I., Muro, I., Chen, C.H., Seol, J.H., Yoo, S.J., Guo, M., Park, J.M., Hay, B.A. J. Biol. Chem. (2007) [Pubmed]
  5. Growth suppression induced by the TRC8 hereditary kidney cancer gene is dependent upon JAB1/CSN5. Gemmill, R.M., Lee, J.P., Chamovitz, D.A., Segal, D., Hooper, J.E., Drabkin, H.A. Oncogene (2005) [Pubmed]
  6. Tau is not normally degraded by the proteasome. Feuillette, S., Blard, O., Lecourtois, M., Frébourg, T., Campion, D., Dumanchin, C. J. Neurosci. Res. (2005) [Pubmed]
  7. SUMO modification is required for in vivo Hox gene regulation by the Caenorhabditis elegans Polycomb group protein SOP-2. Zhang, H., Smolen, G.A., Palmer, R., Christoforou, A., van den Heuvel, S., Haber, D.A. Nat. Genet. (2004) [Pubmed]
  8. Independent regulation of synaptic size and activity by the anaphase-promoting complex. van Roessel, P., Elliott, D.A., Robinson, I.M., Prokop, A., Brand, A.H. Cell (2004) [Pubmed]
  9. Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate. Ball, E., Karlik, C.C., Beall, C.J., Saville, D.L., Sparrow, J.C., Bullard, B., Fyrberg, E.A. Cell (1987) [Pubmed]
  10. Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome. Levinger, L., Varshavsky, A. Cell (1982) [Pubmed]
  11. Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Moberg, K.H., Bell, D.W., Wahrer, D.C., Haber, D.A., Hariharan, I.K. Nature (2001) [Pubmed]
  12. Structure and expression of ubiquitin genes of Drosophila melanogaster. Lee, H.S., Simon, J.A., Lis, J.T. Mol. Cell. Biol. (1988) [Pubmed]
  13. Drosophila Nedd4 regulates endocytosis of notch and suppresses its ligand-independent activation. Sakata, T., Sakaguchi, H., Tsuda, L., Higashitani, A., Aigaki, T., Matsuno, K., Hayashi, S. Curr. Biol. (2004) [Pubmed]
  14. Structure and expression of the Drosophila ubiquitin-80-amino-acid fusion-protein gene. Barrio, R., del Arco, A., Cabrera, H.L., Arribas, C. Biochem. J. (1994) [Pubmed]
  15. Structure and expression of the Drosophila ubiquitin-52-amino-acid fusion-protein gene. Cabrera, H.L., Barrio, R., Arribas, C. Biochem. J. (1992) [Pubmed]
  16. Analyzing the Degradation of PERIOD Protein by the Ubiquitin-Proteasome Pathway in Cultured Drosophila Cells. Ko, H.W., Edery, I. Meth. Enzymol. (2005) [Pubmed]
  17. Neuralized functions as an E3 ubiquitin ligase during Drosophila development. Yeh, E., Dermer, M., Commisso, C., Zhou, L., McGlade, C.J., Boulianne, G.L. Curr. Biol. (2001) [Pubmed]
  18. Unique gene organization: alternative splicing in Drosophila produces two structurally unrelated proteins. Mottus, R.C., Whitehead, I.P., O'Grady, M., Sobel, R.E., Burr, R.H., Spiegelman, G.B., Grigliatti, T.A. Gene (1997) [Pubmed]
  19. Ubiquitination-dependent mechanisms regulate synaptic growth and function. DiAntonio, A., Haghighi, A.P., Portman, S.L., Lee, J.D., Amaranto, A.M., Goodman, C.S. Nature (2001) [Pubmed]
  20. RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Jin, P., Zarnescu, D.C., Zhang, F., Pearson, C.E., Lucchesi, J.C., Moses, K., Warren, S.T. Neuron (2003) [Pubmed]
  21. The BAL-binding protein BBAP and related Deltex family members exhibit ubiquitin-protein isopeptide ligase activity. Takeyama, K., Aguiar, R.C., Gu, L., He, C., Freeman, G.J., Kutok, J.L., Aster, J.C., Shipp, M.A. J. Biol. Chem. (2003) [Pubmed]
  22. Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains. Chastagner, P., Isra??l, A., Brou, C. EMBO Rep. (2006) [Pubmed]
  23. Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. Warrick, J.M., Morabito, L.M., Bilen, J., Gordesky-Gold, B., Faust, L.Z., Paulson, H.L., Bonini, N.M. Mol. Cell (2005) [Pubmed]
  24. The Drosophila developmental gene fat facets has a human homologue in Xp11.4 which escapes X-inactivation and has related sequences on Yq11.2. Jones, M.H., Furlong, R.A., Burkin, H., Chalmers, I.J., Brown, G.M., Khwaja, O., Affara, N.A. Hum. Mol. Genet. (1996) [Pubmed]
  25. RING finger ubiquitin-protein isopeptide ligase Nrdp1/FLRF regulates parkin stability and activity. Zhong, L., Tan, Y., Zhou, A., Yu, Q., Zhou, J. J. Biol. Chem. (2005) [Pubmed]
  26. Drosophila Nedd4, a ubiquitin ligase, is recruited by Commissureless to control cell surface levels of the roundabout receptor. Myat, A., Henry, P., McCabe, V., Flintoft, L., Rotin, D., Tear, G. Neuron (2002) [Pubmed]
  27. UbcD4, a ubiquitin-conjugating enzyme in Drosophila melanogaster expressed in pole cells. Canning, M., Kirby, R., Finnegan, D. Mol. Genet. Genomics (2002) [Pubmed]
  28. The ubiquitin-interacting motifs target the endocytic adaptor protein epsin for ubiquitination. Oldham, C.E., Mohney, R.P., Miller, S.L., Hanes, R.N., O'Bryan, J.P. Curr. Biol. (2002) [Pubmed]
  29. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Pham, A.D., Sauer, F. Science (2000) [Pubmed]
  30. The cellular protein level of parkin is regulated by its ubiquitin-like domain. Finney, N., Walther, F., Mantel, P.Y., Stauffer, D., Rovelli, G., Dev, K.K. J. Biol. Chem. (2003) [Pubmed]
  31. Genetic analysis of the requirements for alpha-actinin function. Dubreuil, R.R., Wang, P. J. Muscle Res. Cell. Motil. (2000) [Pubmed]
  32. Regulation of Commissureless by the Ubiquitin Ligase DNedd4 Is Required for Neuromuscular Synaptogenesis in Drosophila melanogaster. Ing, B., Shteiman-Kotler, A., Castelli, M., Henry, P., Pak, Y., Stewart, B., Boulianne, G.L., Rotin, D. Mol. Cell. Biol. (2007) [Pubmed]
  33. Drosophila deltex mediates suppressor of Hairless-independent and late-endosomal activation of Notch signaling. Hori, K., Fostier, M., Ito, M., Fuwa, T.J., Go, M.J., Okano, H., Baron, M., Matsuno, K. Development (2004) [Pubmed]
  34. The interplay between DSL proteins and ubiquitin ligases in Notch signaling. Pitsouli, C., Delidakis, C. Development (2005) [Pubmed]
  35. Structural studies of arthrin: monoubiquitinated actin. Burgess, S., Walker, M., Knight, P.J., Sparrow, J., Schmitz, S., Offer, G., Bullard, B., Leonard, K., Holt, J., Trinick, J. J. Mol. Biol. (2004) [Pubmed]
  36. Capillary electrophoresis assay for ubiquitin carboxyl-terminal hydrolases with chemically synthesized ubiquitin-valine as substrate. Franklin, K., Layfield, R., Landon, M., Ramage, R., Brown, A., Love, S., Muir, T., Urquhart, K., Bownes, M., Mayer, R.J. Anal. Biochem. (1997) [Pubmed]
 
WikiGenes - Universities