The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

SM1  -  Schistosoma mansoni, susceptibility/resist...

Homo sapiens

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SM1


High impact information on SM1


Biological context of SM1


Anatomical context of SM1

  • SM1 is specifically expressed in smooth muscles from early development and SM2 appears after birth [8].
  • By double-fluorescence immunostaining of the tunica muscularis of the GI tract wall, co-expression of KIT, CD34, and SMemb was demonstrated in ICCs, which were negative for SM1 and SM2 [12].
  • Therefore, in this study, to clarify the origin of MRT, the expressions of cytoplasmic proteins including smooth-muscle-specific proteins (alpha-smooth-muscle actin, basic calponin, smooth-muscle-myosin-heavy-chain isoforms of SM1 and SM2) in the primary-MRT tissue and cell line were analyzed [13].
  • Recently it was demonstrated that vascular smooth muscles contain two types of myosin heavy chain (MHC) isoforms, SM1 and SM2, which are unique molecular markers of smooth muscle cell phenotypes [14].
  • Antibody-mediated chemiluminescence of polymorphonuclear leukocytes was enhanced in the presence of human complement, and a weak opsonic effect was detected with one of the cross-reacting antibodies (SM1) when this system was used [1].

Associations of SM1 with chemical compounds

  • An increase in the COOH-terminal myosin heavy chain isoform SM1-to-SM2 ratio with 17beta-estradiol treatment may underlie the changes observed in contractility [15].
  • Long-term treatment with doxazosin induced differentiation tended towards a contractile phenotype, as indicated by an increase of the ratio of smooth muscle heavy chain myosin subtypes SM2/SM1 [16].
  • Mineralization of poly(trans-1,4-isoprene) after 80 days varied from 3 % (strain SM1) to 54 % (strain SEI2b) and from 34 % (strain L1b) to 43 % (strain SH22a) for the cis-isomer after 78 days [17].
  • The SM2 isoform was up-regulated during postnatal development and the SM1 to SM2 ratio changed during pregnancy and post-partum period but not with human gonadotropin treatment which increases the level of circulating progesterone [18].
  • Myroides sp. strain SM1 possessed a biosynthetic route to cholic acid from cholesterol [19].

Other interactions of SM1


Analytical, diagnostic and therapeutic context of SM1


  1. Role of anti-pilus antibodies in host defense against gonococcal infection studied with monoclonal anti-pilus antibodies. Virji, M., Heckels, J.E. Infect. Immun. (1985) [Pubmed]
  2. Myosin heavy chain isoform expression in human myometrium: presence of an embryonic nonmuscle isoform in leiomyomas and in cultured cells. Cavaillé, F., Fournier, T., Dallot, E., Dhellemes, C., Ferré, F. Cell Motil. Cytoskeleton (1995) [Pubmed]
  3. Expression of smooth muscle proteins in cavernous and arteriovenous malformations. Hoya, K., Asai, A., Sasaki, T., Kimura, K., Kirino, T. Acta Neuropathol. (2001) [Pubmed]
  4. The role of smooth muscle cell differentiation in the mechanism of obliteration of processus vaginalis. Hosgor, M., Karaca, I., Ozer, E., Erdag, G., Ulukus, C., Fescekoglu, O., Aikawa, M. J. Pediatr. Surg. (2004) [Pubmed]
  5. Immunohistochemical studies on expression of human vascular smooth muscle myosin heavy chain isoforms in normal mammary glands, benign mammary disorders and mammary carcinomas. Ohyabu, I., Takasaki, T., Akiba, S., Nomura, S., Enokizono, N., Sagara, Y., Hiroi, J., Nagai, R., Yoshida, H. Pathol. Int. (1998) [Pubmed]
  6. Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31-q33. Marquet, S., Abel, L., Hillaire, D., Dessein, H., Kalil, J., Feingold, J., Weissenbach, J., Dessein, A.J. Nat. Genet. (1996) [Pubmed]
  7. Redifferentiation of smooth muscle cells after coronary angioplasty determined via myosin heavy chain expression. Aikawa, M., Sakomura, Y., Ueda, M., Kimura, K., Manabe, I., Ishiwata, S., Komiyama, N., Yamaguchi, H., Yazaki, Y., Nagai, R. Circulation (1997) [Pubmed]
  8. Difference of myosin heavy chain expression between mesangial cells and vascular smooth muscles. Nakai, K., Ito, C., Yumura, W., Horita, S., Nihei, H., Sugino, N., Nagai, R. Nippon Jinzo Gakkai shi. (1995) [Pubmed]
  9. Pulmonary expression of vascular endothelial growth factor and myosin isoforms in rats with congenital diaphragmatic hernia. Okazaki, T., Sharma, H.S., Aikawa, M., Yamataka, A., Nagai, R., Miyano, T., Tibboel, D. J. Pediatr. Surg. (1997) [Pubmed]
  10. C-terminal isoforms of the myosin heavy chain and smooth muscle function. Martin, A.F., Bhatti, S., Paul, R.J. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. (1997) [Pubmed]
  11. Genetic control of schistosome infections by the SM1 locus of the 5q31-q33 region is linked to differentiation of type 2 helper T lymphocytes. Rodrigues, V., Piper, K., Couissinier-Paris, P., Bacelar, O., Dessein, H., Dessein, A.J. Infect. Immun. (1999) [Pubmed]
  12. Embryonic form of smooth muscle myosin heavy chain (SMemb/MHC-B) in gastrointestinal stromal tumor and interstitial cells of Cajal. Sakurai, S., Fukasawa, T., Chong, J.M., Tanaka, A., Fukayama, M. Am. J. Pathol. (1999) [Pubmed]
  13. Malignant rhabdoid-tumor cell line showing neural and smooth-muscle-cell phenotypes. Sugimoto, T., Hosoi, H., Horii, Y., Ishida, H., Mine, H., Takahashi, K., Abe, T., Ohta, S., Sawada, T. Int. J. Cancer (1999) [Pubmed]
  14. Diversity and variability of smooth muscle phenotypes of renal arterioles as revealed by myosin isoform expression. Kimura, K., Nagai, R., Sakai, T., Aikawa, M., Kuro-o, M., Kobayashi, N., Shirato, I., Inagami, T., Oshi, M., Suzuki, N. Kidney Int. (1995) [Pubmed]
  15. Effects of sex and estrogen on myosin COOH-terminal isoforms and contractility in rat aorta. Paul, R.J., Bowman, P.S., Johnson, J., Martin, A.F. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2007) [Pubmed]
  16. Effects of alpha1-adrenoceptor antagonists on cultured prostatic smooth muscle cells. Boesch, S.T., Dobler, G., Ramoner, R., Corvin, S., Thurnher, M., Bartsch, G., Klocker, H. The Prostate. Supplement. (2000) [Pubmed]
  17. Bacterial degradation of poly(trans-1,4-isoprene) (gutta percha). Warneke, S., Arenskötter, M., Tenberge, K.B., Steinbüchel, A. Microbiology (Reading, Engl.) (2007) [Pubmed]
  18. Oestrogen-dependent expression of the SM2 smooth muscle-type myosin isoform in rabbit myometrium. Capriani, A., Chiavegato, A., Franch, R., Azzarello, G., Vinante, O., Sartore, S. J. Muscle Res. Cell. Motil. (1997) [Pubmed]
  19. Bile acids are new products of a marine bacterium, Myroides sp. strain SM1. Maneerat, S., Nitoda, T., Kanzaki, H., Kawai, F. Appl. Microbiol. Biotechnol. (2005) [Pubmed]
  20. Induction of smooth muscle cells in the fibrous capsule of human hepatocellular carcinoma but not in the septa of hepatic cirrhosis. Kojima, A., Kaneda, K., Ueda, M., Maki, A., Takabayashi, A., Fukushima, S., Sakurai, M., Nagai, R., Matsui-Yuasa, I. Virchows Arch. (1999) [Pubmed]
  21. Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells. Reusch, P., Wagdy, H., Reusch, R., Wilson, E., Ives, H.E. Circ. Res. (1996) [Pubmed]
  22. Absence of linkage between MHC and a gene involved in susceptibility to human schistosomiasis. Chiarella, J.M., Goldberg, A.C., Abel, L., Carvalho, E.M., Kalil, J., Dessein, A. Braz. J. Med. Biol. Res. (1998) [Pubmed]
  23. Modulation of the differentiation status of cultured prostatic smooth muscle cells by an alpha1-adrenergic receptor antagonist. Boesch, S.T., Corvin, S., Zhang, J., Rogatsch, H., Bartsch, G., Klocker, H. Prostate (1999) [Pubmed]
  24. Detection of bone marrow metastasis in small-cell lung cancer by monoclonal antibody. Stahel, R.A., Mabry, M., Skarin, A.T., Speak, J., Bernal, S.D. J. Clin. Oncol. (1985) [Pubmed]
  25. Identification and detection of Stenotrophomonas maltophilia by rRNA-directed PCR. Whitby, P.W., Carter, K.B., Burns, J.L., Royall, J.A., LiPuma, J.J., Stull, T.L. J. Clin. Microbiol. (2000) [Pubmed]
  26. Induction of anti-mammary cancer immunity by engaging the OX-40 receptor in vivo. Morris, A., Vetto, J.T., Ramstad, T., Funatake, C.J., Choolun, E., Entwisle, C., Weinberg, A.D. Breast Cancer Res. Treat. (2001) [Pubmed]
WikiGenes - Universities