The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

CD34  -  CD34 molecule

Homo sapiens

Synonyms: Hematopoietic progenitor cell antigen CD34
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CD34


Psychiatry related information on CD34


High impact information on CD34


Chemical compound and disease context of CD34


Biological context of CD34

  • The heparin binding PECAM-1 adhesion molecule is expressed by CD34+ hematopoietic precursor cells with early myeloid and B-lymphoid cell phenotypes [17].
  • Induction of apoptosis by overnight incubation of CD34 cells in serum-deprived medium resulted in the upregulation of bcl-2 as a single population histogram [18].
  • The reason for this may be the convergence of various unfavorable prognostic factors, such as (1) the high incidence of cytogenetic abnormalities; (2) the lack of differentiation features and the expression of immaturity markers such as CD34 and CD7; and (3) the frequent expression of P-170 [19].
  • The other case differed by virtue of expression of CD34 and was also hyperdiploid with 55 chromosomes [20].
  • We show here that SDF-1 may also be involved in hematopoiesis, promoting the proliferation of human CD34(+) cells purified from normal adult peripheral blood (PB) [21].

Anatomical context of CD34

  • However, we demonstrate that SCID-repopulating cells present in the CD34(+) cell fraction of cord blood can be segregated into subpopulations with distinct repopulation characteristics [2].
  • Progressive changes included: loss of CD34, acquisition of and graded increases in the level of cell surface CD19, and appearance of immature B cells expressing mu/kappa or mu/lambda cell surface Ig receptors [22].
  • The cytoplasmic domain of stem cell antigen CD34 is essential for cytoadhesion signaling but not sufficient for proliferation signaling [23].
  • Flow cytometric analysis of bone marrow cells based on the expression of CD34, Kit receptor, and G-CSFR demonstrated a reduced frequency of CD34(+)/Kit(+)/ G-CSFR(+) cells in patients with SCN [24].
  • Expression of the CD34 gene in vascular endothelial cells [25].

Associations of CD34 with chemical compounds


Physical interactions of CD34

  • Our investigations shed new light on signaling pathways of CD34 by demonstrating that CD34 couples to the hematopoietic adapter protein CrkL [31].
  • Conversely, CD44 bound HA very weakly when exons V8-V10 were replaced with a CD34 mucin domain, which is heavily modified by O-linked glycans [32].
  • It is expressed by the primitive CD34 positive haemopoietic stem cells and interacts with the Kit ligand for signal transduction [33].
  • The pattern of CD31 immunolabelling was more complex and extensive than the vessel pattern shown by CD34 or factor VIII staining [34].
  • Among the adhesion molecules, the integrins of the beta 1-subfamily are known to direct cell-cell and cell-matrix interactions and evidence has been provided that CD34-positive stem cells bind either to the bone marrow stroma or to the extracellular matrix proteins through the beta 1-integrins [35].

Regulatory relationships of CD34

  • Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival [21].
  • CD34 expression of this cell line and the ability of transforming growth factor-beta to inhibit the TNF-alpha induction of E-selectin was examined [36].
  • The serum VEGF levels in hemodialysis patients were not different from those in control subjects and did not correlate with CD34+ MNC counts [37].
  • CD38 co-expression analysis also showed that a small but distinct group of cells expressing low CD38 and no external CD34 antigen could be detected [38].
  • CXCR-4 was expressed on PB CD34(+) cells [21].

Other interactions of CD34


Analytical, diagnostic and therapeutic context of CD34


  1. Low microvessel density is an unfavorable histoprognostic factor in pancreatic endocrine tumors. Marion-Audibert, A.M., Barel, C., Gouysse, G., Dumortier, J., Pilleul, F., Pourreyron, C., Hervieu, V., Poncet, G., Lombard-Bohas, C., Chayvialle, J.A., Partensky, C., Scoazec, J.Y. Gastroenterology (2003) [Pubmed]
  2. Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Hogan, C.J., Shpall, E.J., Keller, G. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  3. Increased erythropoietin-receptor expression on CD34-positive bone marrow cells from patients with chronic myeloid leukemia. Wognum, A.W., Krystal, G., Eaves, C.J., Eaves, A.C., Lansdorp, P.M. Blood (1992) [Pubmed]
  4. The supportive effects of erythropoietin and mast cell growth factor on CD34+/CD36- sorted bone marrow cells of myelodysplasia patients. Brada, S., de Wolf, J., Hendriks, D., Esselink, M., Ruiters, M., Vellenga, E. Blood (1996) [Pubmed]
  5. Maturation of acute T-lymphoblastic leukemia cells after CD2 ligation and subsequent treatment with interleukin-2. Mentz, F., Ouaaz, F., Michel, A., Blanc, C., Hervé, P., Bismuth, G., Debré, P., Merle-Béral, H., Mossalayi, M.D. Blood (1994) [Pubmed]
  6. Flow cytometry to estimate circulating hematopoietic progenitors for autologous transplantation: comparative analysis of different CD34 monoclonal antibodies. Siena, S., Bregni, M., Brando, B., Belli, N., Lansdorp, P.M., Bonadonna, G., Gianni, M. Haematologica (1991) [Pubmed]
  7. Expression of leukocyte antigen CD34 by brain capillaries in Alzheimer's disease and neurologically normal subjects. Kalaria, R.N., Kroon, S.N. Acta Neuropathol. (1992) [Pubmed]
  8. Dose intensification and molecular responses in patients with chronic lymphocytic leukaemia: a phase II single centre study. Schey, S., Ahsan, G., Jones, R. Bone Marrow Transplant. (1999) [Pubmed]
  9. Hematopoietic stem cells: are they CD34-positive or CD34-negative? Nakauchi, H. Nat. Med. (1998) [Pubmed]
  10. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Goodell, M.A., Rosenzweig, M., Kim, H., Marks, D.F., DeMaria, M., Paradis, G., Grupp, S.A., Sieff, C.A., Mulligan, R.C., Johnson, R.P. Nat. Med. (1997) [Pubmed]
  11. Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. Doyonnas, R., Kershaw, D.B., Duhme, C., Merkens, H., Chelliah, S., Graf, T., McNagny, K.M. J. Exp. Med. (2001) [Pubmed]
  12. Gene expression profile reveals deregulation of genes with relevant functions in the different subclasses of acute myeloid leukemia. Gutiérrez, N.C., López-Pérez, R., Hernández, J.M., Isidro, I., González, B., Delgado, M., Fermiñán, E., García, J.L., Vázquez, L., González, M., San Miguel, J.F. Leukemia (2005) [Pubmed]
  13. BCL-1 (PRAD-1/cyclin D-1) overexpression distinguishes the blastoid variant of mantle cell lymphoma from B-lineage lymphoblastic lymphoma. Soslow, R.A., Zukerberg, L.R., Harris, N.L., Warnke, R.A. Mod. Pathol. (1997) [Pubmed]
  14. c-kit mutations in gastrointestinal stromal tumors occur preferentially in the spindle rather than in the epithelioid cell variant. Wardelmann, E., Neidt, I., Bierhoff, E., Speidel, N., Manegold, C., Fischer, H.P., Pfeifer, U., Pietsch, T. Mod. Pathol. (2002) [Pubmed]
  15. Expression of von Willebrand's factor, CD34, CD31, and vascular endothelial growth factor in uterine leiomyomas. Poncelet, C., Madelenat, P., Feldmann, G., Walker, F., Darai, E. Fertil. Steril. (2002) [Pubmed]
  16. Angiogenesis in the human corpus luteum: simulated early pregnancy by HCG treatment is associated with both angiogenesis and vessel stabilization. Wulff, C., Dickson, S.E., Duncan, W.C., Fraser, H.M. Hum. Reprod. (2001) [Pubmed]
  17. The heparin binding PECAM-1 adhesion molecule is expressed by CD34+ hematopoietic precursor cells with early myeloid and B-lymphoid cell phenotypes. Watt, S.M., Williamson, J., Genevier, H., Fawcett, J., Simmons, D.L., Hatzfeld, A., Nesbitt, S.A., Coombe, D.R. Blood (1993) [Pubmed]
  18. Apoptotic regulation in primitive hematopoietic precursors. Peters, R., Leyvraz, S., Perey, L. Blood (1998) [Pubmed]
  19. Analysis of treatment failure in patients with minimally differentiated acute myeloid leukemia (AML-M0). Stasi, R., Del Poeta, G., Venditti, A., Masi, M., Stipa, E., Dentamaro, T., Cox, C., Dallapiccola, B., Papa, G. Blood (1994) [Pubmed]
  20. Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. Borowitz, M.J., Hunger, S.P., Carroll, A.J., Shuster, J.J., Pullen, D.J., Steuber, C.P., Cleary, M.L. Blood (1993) [Pubmed]
  21. Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival. Lataillade, J.J., Clay, D., Dupuy, C., Rigal, S., Jasmin, C., Bourin, P., Le Bousse-Kerdilès, M.C. Blood (2000) [Pubmed]
  22. Interleukin 7 independent development of human B cells. Prieyl, J.A., LeBien, T.W. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  23. The cytoplasmic domain of stem cell antigen CD34 is essential for cytoadhesion signaling but not sufficient for proliferation signaling. Hu, M.C., Chien, S.L. Blood (1998) [Pubmed]
  24. Abnormalities of primitive myeloid progenitor cells expressing granulocyte colony-stimulating factor receptor in patients with severe congenital neutropenia. Nakamura, K., Kobayashi, M., Konishi, N., Kawaguchi, H., Miyagawa, S., Sato, T., Toyoda, H., Komada, Y., Kojima, S., Katoh, O., Ueda, K. Blood (2000) [Pubmed]
  25. Expression of the CD34 gene in vascular endothelial cells. Fina, L., Molgaard, H.V., Robertson, D., Bradley, N.J., Monaghan, P., Delia, D., Sutherland, D.R., Baker, M.A., Greaves, M.F. Blood (1990) [Pubmed]
  26. Expression of lymphoid-associated cell surface antigens by childhood acute myeloid leukemia cells lacks prognostic significance. Smith, F.O., Lampkin, B.C., Versteeg, C., Flowers, D.A., Dinndorf, P.A., Buckley, J.D., Woods, W.G., Hammond, G.D., Bernstein, I.D. Blood (1992) [Pubmed]
  27. Recombinant human interleukin-11 synergizes with steel factor and interleukin-3 to promote directly the early stages of murine megakaryocyte development in vitro. Weich, N.S., Fitzgerald, M., Wang, A., Calvetti, J., Yetz-Aldape, J., Neben, S., Turner, K.J. Blood (2000) [Pubmed]
  28. Transgenic targeting with regulatory elements of the human CD34 gene. Radomska, H.S., Gonzalez, D.A., Okuno, Y., Iwasaki, H., Nagy, A., Akashi, K., Tenen, D.G., Huettner, C.S. Blood (2002) [Pubmed]
  29. Primitive myeloid cells express high levels of phospholipase A(2) activity in the absence of leukotriene release: selective regulation by stem cell factor involving the MAP kinase pathway. Roberts, P.J., Mollapour, E., Watts, M.J., Linch, D.C. Blood (1999) [Pubmed]
  30. Molecular cloning of a cDNA encoding CD34, a sialomucin of human hematopoietic stem cells. Simmons, D.L., Satterthwaite, A.B., Tenen, D.G., Seed, B. J. Immunol. (1992) [Pubmed]
  31. The adapter protein CrkL associates with CD34. Felschow, D.M., McVeigh, M.L., Hoehn, G.T., Civin, C.I., Fackler, M.J. Blood (2001) [Pubmed]
  32. Regulation of CD44 binding to hyaluronan by glycosylation of variably spliced exons. Bennett, K.L., Modrell, B., Greenfield, B., Bartolazzi, A., Stamenkovic, I., Peach, R., Jackson, D.G., Spring, F., Aruffo, A. J. Cell Biol. (1995) [Pubmed]
  33. Low frequency of c-kit expression and detection of an aberrant Kit message among Hong Kong Chinese myelogenous leukaemia patients. Chui, C.H., Lau, F.Y., Yau, K.S., Lee, F.C., Chan, L.C., Cheng, G. Cancer Lett. (1997) [Pubmed]
  34. Angiogenesis in urothelial tumors of the upper urinary tract. Baderca, F., Lighezan, R., Dema, A., Alexa, A., Raica, M. Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie. (2005) [Pubmed]
  35. Beta-1-integrin expression in adult acute lymphoblastic leukemia: possible relationship with the stem cell antigen CD34. Cacciola, R.R., Stagno, F., Impera, S., Assisi, A.R., Cacciola, E., Guglielmo, P. Acta Haematol. (1997) [Pubmed]
  36. Characterization of a spontaneously transformed human endothelial cell line. Cockerill, G.W., Meyer, G., Noack, L., Vadas, M.A., Gamble, J.R. Lab. Invest. (1994) [Pubmed]
  37. Circulating endothelial progenitor cells are reduced in hemodialysis patients. Eizawa, T., Murakami, Y., Matsui, K., Takahashi, M., Muroi, K., Amemiya, M., Takano, R., Kusano, E., Shimada, K., Ikeda, U. Current medical research and opinion. (2003) [Pubmed]
  38. Multiparametric analysis of immature cell populations in umbilical cord blood and bone marrow. McGuckin, C.P., Pearce, D., Forraz, N., Tooze, J.A., Watt, S.M., Pettengell, R. Eur. J. Haematol. (2003) [Pubmed]
  39. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Fiedler, W., Graeven, U., Ergün, S., Verago, S., Kilic, N., Stockschläder, M., Hossfeld, D.K. Blood (1997) [Pubmed]
  40. Changes in cell surface antigen expressions during proliferation and differentiation of human erythroid progenitors. Okumura, N., Tsuji, K., Nakahata, T. Blood (1992) [Pubmed]
  41. Phenotypic heterogeneity of TDT+ cells in the blood and bone marrow: implications for surveillance of residual leukemia. Smith, R.G., Kitchens, R.L. Blood (1989) [Pubmed]
  42. Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution. Dao, M.A., Arevalo, J., Nolta, J.A. Blood (2003) [Pubmed]
  43. Retrovirally transduced CD34++ human cord blood cells generate T cells expressing high levels of the retroviral encoded green fluorescent protein marker in vitro. Verhasselt, B., De Smedt, M., Verhelst, R., Naessens, E., Plum, J. Blood (1998) [Pubmed]
  44. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Dome, B., Timar, J., Dobos, J., Meszaros, L., Raso, E., Paku, S., Kenessey, I., Ostoros, G., Magyar, M., Ladanyi, A., Bogos, K., Tovari, J. Cancer Res. (2006) [Pubmed]
WikiGenes - Universities