The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

RFC1  -  replication factor C subunit 1

Saccharomyces cerevisiae S288c

Synonyms: Activator 1 95 kDa subunit, CDC44, Cell division control protein 44, Replication factor C subunit 1, Replication factor C1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of RFC1

  • Therefore, at least two subunits in RFC make strong contacts with PCNA, unlike the Escherichia coli gamma complex in which only one subunit makes strong contact with the beta clamp [1].
  • The RFC1 gene was cloned under control of the strong inducible bacteriophage T7 promoter, yet induction did not yield detectable Rfc1p [2].
  • It also interacts with several host proteins, including the cell cycle regulator, retinoblastoma, and essential components of the cell DNA replication machinery, like proliferating nuclear cell antigen (PCNA) and RFC-1 [3].
 

High impact information on RFC1

 

Biological context of RFC1

 

Anatomical context of RFC1

 

Associations of RFC1 with chemical compounds

 

Physical interactions of RFC1

 

Enzymatic interactions of RFC1

 

Regulatory relationships of RFC1

 

Other interactions of RFC1

 

Analytical, diagnostic and therapeutic context of RFC1

References

  1. Replication factor C clamp loader subunit arrangement within the circular pentamer and its attachment points to proliferating cell nuclear antigen. Yao, N., Coryell, L., Zhang, D., Georgescu, R.E., Finkelstein, J., Coman, M.M., Hingorani, M.M., O'Donnell, M. J. Biol. Chem. (2003) [Pubmed]
  2. Overproduction in Escherichia coli and characterization of yeast replication factor C lacking the ligase homology domain. Gomes, X.V., Gary, S.L., Burgers, P.M. J. Biol. Chem. (2000) [Pubmed]
  3. Interaction between a geminivirus replication protein and the plant sumoylation system. Castillo, A.G., Kong, L.J., Hanley-Bowdoin, L., Bejarano, E.R. J. Virol. (2004) [Pubmed]
  4. Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Franco, A.A., Lam, W.M., Burgers, P.M., Kaufman, P.D. Genes Dev. (2005) [Pubmed]
  5. The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time. Hiraga, S., Robertson, E.D., Donaldson, A.D. EMBO J. (2006) [Pubmed]
  6. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. Bellaoui, M., Chang, M., Ou, J., Xu, H., Boone, C., Brown, G.W. EMBO J. (2003) [Pubmed]
  7. Functional and physical interaction between Rad24 and Rfc5 in the yeast checkpoint pathways. Shimomura, T., Ando, S., Matsumoto, K., Sugimoto, K. Mol. Cell. Biol. (1998) [Pubmed]
  8. Rfc5, in cooperation with rad24, controls DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae. Naiki, T., Shimomura, T., Kondo, T., Matsumoto, K., Sugimoto, K. Mol. Cell. Biol. (2000) [Pubmed]
  9. Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Cullmann, G., Fien, K., Kobayashi, R., Stillman, B. Mol. Cell. Biol. (1995) [Pubmed]
  10. ATP utilization by yeast replication factor C. IV. RFC ATP-binding mutants show defects in DNA replication, DNA repair, and checkpoint regulation. Schmidt, S.L., Pautz, A.L., Burgers, P.M. J. Biol. Chem. (2001) [Pubmed]
  11. Saccharomyces cerevisiae replication factor C. I. Purification and characterization of its ATPase activity. Yoder, B.L., Burgers, P.M. J. Biol. Chem. (1991) [Pubmed]
  12. Molecular modeling-based analysis of interactions in the RFC-dependent clamp-loading process. Venclovas, C., Colvin, M.E., Thelen, M.P. Protein Sci. (2002) [Pubmed]
  13. Sequence analysis of a 30 kb DNA segment from yeast chromosome XIV carrying a ribosomal protein gene cluster, the genes encoding a plasma membrane protein and a subunit of replication factor C, and a novel putative serine/threonine protein kinase gene. Maurer, K.C., Urbanus, J.H., Planta, R.J. Yeast (1995) [Pubmed]
  14. Halotolerance of the yeast Arxula adeninivorans LS3. Yang, X.X., Wartmann, T., Stoltenburg, R., Kunze, G. Antonie Van Leeuwenhoek (2000) [Pubmed]
  15. ATP utilization by yeast replication factor C. II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA. Gomes, X.V., Schmidt, S.L., Burgers, P.M. J. Biol. Chem. (2001) [Pubmed]
  16. Functional sites of human PCNA which interact with p21 (Cip1/Waf1), DNA polymerase delta and replication factor C. Oku, T., Ikeda, S., Sasaki, H., Fukuda, K., Morioka, H., Ohtsuka, E., Yoshikawa, H., Tsurimoto, T. Genes Cells (1998) [Pubmed]
  17. A Saccharomyces cerevisiae DNA helicase associated with replication factor C. Li, X., Yoder, B.L., Burgers, P.M. J. Biol. Chem. (1992) [Pubmed]
  18. A novel Rad24 checkpoint protein complex closely related to replication factor C. Green, C.M., Erdjument-Bromage, H., Tempst, P., Lowndes, N.F. Curr. Biol. (2000) [Pubmed]
  19. The RFC2 gene encoding a subunit of replication factor C of Saccharomyces cerevisiae. Noskov, V., Maki, S., Kawasaki, Y., Leem, S.H., Ono, B., Araki, H., Pavlov, Y., Sugino, A. Nucleic Acids Res. (1994) [Pubmed]
  20. Identification of protein complexes required for efficient sister chromatid cohesion. Mayer, M.L., Pot, I., Chang, M., Xu, H., Aneliunas, V., Kwok, T., Newitt, R., Aebersold, R., Boone, C., Brown, G.W., Hieter, P. Mol. Biol. Cell (2004) [Pubmed]
  21. On the specificity of interaction between the Saccharomyces cerevisiae clamp loader replication factor C and primed DNA templates during DNA replication. Hingorani, M.M., Coman, M.M. J. Biol. Chem. (2002) [Pubmed]
  22. Proliferating cell nuclear antigen (pol30) mutations suppress cdc44 mutations and identify potential regions of interaction between the two encoded proteins. McAlear, M.A., Howell, E.A., Espenshade, K.K., Holm, C. Mol. Cell. Biol. (1994) [Pubmed]
  23. The PCNA-RFC families of DNA clamps and clamp loaders. Majka, J., Burgers, P.M. Prog. Nucleic Acid Res. Mol. Biol. (2004) [Pubmed]
  24. Mechanical link between cohesion establishment and DNA replication: Ctf7p/Eco1p, a cohesion establishment factor, associates with three different replication factor C complexes. Kenna, M.A., Skibbens, R.V. Mol. Cell. Biol. (2003) [Pubmed]
  25. Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway. Sugimoto, K., Ando, S., Shimomura, T., Matsumoto, K. Mol. Cell. Biol. (1997) [Pubmed]
  26. Cloning and characterization of the essential Saccharomyces cerevisiae RFC4 gene encoding the 37-kDa subunit of replication factor C. Li, X., Burgers, P.M. J. Biol. Chem. (1994) [Pubmed]
  27. Fission yeast rad17: a homologue of budding yeast RAD24 that shares regions of sequence similarity with DNA polymerase accessory proteins. Griffiths, D.J., Barbet, N.C., McCready, S., Lehmann, A.R., Carr, A.M. EMBO J. (1995) [Pubmed]
  28. Molecular cloning and expression of the Saccharomyces cerevisiae RFC3 gene, an essential component of replication factor C. Li, X., Burgers, P.M. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  29. Proteins interacting with Lin 1p, a putative link between chromosome segregation, mRNA splicing and DNA replication in Saccharomyces cerevisiae. Bialkowska, A., Kurlandzka, A. Yeast (2002) [Pubmed]
  30. Three new DNA helicases from Saccharomyces cerevisiae. Li, X., Yoder, B.L., Burgers, P.M. Chromosoma (1992) [Pubmed]
 
WikiGenes - Universities