The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

MCD1  -  Mcd1p

Saccharomyces cerevisiae S288c

Synonyms: PDS3, RHC21, SCC1, Sister chromatid cohesion protein 1, YD8119.04, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of MCD1


High impact information on MCD1

  • Proper separation of homologous chromosomes at the first meiotic division requires the production of physical connections (chiasmata) between homologs through recombinational exchange of chromosome arms after sister-chromatid cohesion is established but before chromosome segregation takes place [2].
  • Instead, we found a significant decrease in the association of cohesin subunit Mcd1p (Scc1p) to rDNA in sir2Delta relative to SIR2 strains [3].
  • The cohesin complex is essential for sister chromatid cohesion during mitosis [4].
  • Separin immunoprecipitates are sufficient to cleave SCC1, indicating that separin is associated with a protease activity [5].
  • We show that residual amounts of the cohesin SCC1 remain associated with human centromeres until the onset of anaphase when a similarly small amount of SCC1 is cleaved [5].

Biological context of MCD1


Anatomical context of MCD1


Associations of MCD1 with chemical compounds


Physical interactions of MCD1


Enzymatic interactions of MCD1

  • Several recent reports show that the protease Esp1 cleaves the cohesin subunit Scc1/Mcd1 to induce sister-chromatid segregation in yeast and vertebrates [23].

Regulatory relationships of MCD1


Other interactions of MCD1


Analytical, diagnostic and therapeutic context of MCD1


  1. Replication-related activities establish cohesion between sister chromatids. Wang, Z., Christman, M.F. Cell Biochem. Biophys. (2001) [Pubmed]
  2. Cyclin-dependent kinase directly regulates initiation of meiotic recombination. Henderson, K.A., Kee, K., Maleki, S., Santini, P.A., Keeney, S. Cell (2006) [Pubmed]
  3. SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Kobayashi, T., Horiuchi, T., Tongaonkar, P., Vu, L., Nomura, M. Cell (2004) [Pubmed]
  4. Chromosomal cohesin forms a ring. Gruber, S., Haering, C.H., Nasmyth, K. Cell (2003) [Pubmed]
  5. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Waizenegger, I.C., Hauf, S., Meinke, A., Peters, J.M. Cell (2000) [Pubmed]
  6. Disruption and functional analysis of seven ORFs on chromosome IV: YDL057w, YDL012c, YDL010w, YDL009c, YDL008w (APC11), YDL005c (MED2) and YDL003w (MCD1). Smith, K.N., Iwanejko, L., Loeillet, S., Fabre, F., Nicolas, A. Yeast (1999) [Pubmed]
  7. The budding yeast cohesin gene SCC1/MCD1/RHC21 genetically interacts with PKA, CDK and APC. Heo, S.J., Tatebayashi, K., Ikeda, H. Curr. Genet. (1999) [Pubmed]
  8. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Ciosk, R., Zachariae, W., Michaelis, C., Shevchenko, A., Mann, M., Nasmyth, K. Cell (1998) [Pubmed]
  9. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Tóth, A., Ciosk, R., Uhlmann, F., Galova, M., Schleiffer, A., Nasmyth, K. Genes Dev. (1999) [Pubmed]
  10. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Tanaka, T., Fuchs, J., Loidl, J., Nasmyth, K. Nat. Cell Biol. (2000) [Pubmed]
  11. Separase: a universal trigger for sister chromatid disjunction but not chromosome cycle progression. Wirth, K.G., Wutz, G., Kudo, N.R., Desdouets, C., Zetterberg, A., Taghybeeglu, S., Seznec, J., Ducos, G.M., Ricci, R., Firnberg, N., Peters, J.M., Nasmyth, K. J. Cell Biol. (2006) [Pubmed]
  12. A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Hamant, O., Golubovskaya, I., Meeley, R., Fiume, E., Timofejeva, L., Schleiffer, A., Nasmyth, K., Cande, W.Z. Curr. Biol. (2005) [Pubmed]
  13. The spindle pole body assembly component mps3p/nep98p functions in sister chromatid cohesion. Antoniacci, L.M., Kenna, M.A., Uetz, P., Fields, S., Skibbens, R.V. J. Biol. Chem. (2004) [Pubmed]
  14. The sister-chromatid cohesion protein ORD is required for chiasma maintenance in Drosophila oocytes. Bickel, S.E., Orr-Weaver, T.L., Balicky, E.M. Curr. Biol. (2002) [Pubmed]
  15. Destruction of the securin Pds1p occurs at the onset of anaphase during both meiotic divisions in yeast. Salah, S.M., Nasmyth, K. Chromosoma (2000) [Pubmed]
  16. Global control of histone modification by the anaphase-promoting complex. Ramaswamy, V., Williams, J.S., Robinson, K.M., Sopko, R.L., Schultz, M.C. Mol. Cell. Biol. (2003) [Pubmed]
  17. Securin and separase phosphorylation act redundantly to maintain sister chromatid cohesion in mammalian cells. Huang, X., Hatcher, R., York, J.P., Zhang, P. Mol. Biol. Cell (2005) [Pubmed]
  18. A model for ATP hydrolysis-dependent binding of cohesin to DNA. Weitzer, S., Lehane, C., Uhlmann, F. Curr. Biol. (2003) [Pubmed]
  19. Fidelity and damage bypass ability of Schizosaccharomyces pombe Eso1 protein, comprised of DNA polymerase eta and sister chromatid cohesion protein Ctf7. Madril, A.C., Johnson, R.E., Washington, M.T., Prakash, L., Prakash, S. J. Biol. Chem. (2001) [Pubmed]
  20. Pds5p regulates the maintenance of sister chromatid cohesion and is sumoylated to promote the dissolution of cohesion. Stead, K., Aguilar, C., Hartman, T., Drexel, M., Meluh, P., Guacci, V. J. Cell Biol. (2003) [Pubmed]
  21. Structure/function analysis of the Saccharomyces cerevisiae Trf4/Pol sigma DNA polymerase. Wang, Z., Castaño, I.B., Adams, C., Vu, C., Fitzhugh, D., Christman, M.F. Genetics (2002) [Pubmed]
  22. Identification of protein complexes required for efficient sister chromatid cohesion. Mayer, M.L., Pot, I., Chang, M., Xu, H., Aneliunas, V., Kwok, T., Newitt, R., Aebersold, R., Boone, C., Brown, G.W., Hieter, P. Mol. Biol. Cell (2004) [Pubmed]
  23. Together until separin do us part. Amon, A. Nat. Cell Biol. (2001) [Pubmed]
  24. Separase is required at multiple pre-anaphase cell cycle stages in human cells. Giménez-Abián, J.F., Díaz-Martínez, L.A., Waizenegger, I.C., Giménez-Martín, G., Clarke, D.J. Cell Cycle (2005) [Pubmed]
  25. Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. Hartman, T., Stead, K., Koshland, D., Guacci, V. J. Cell Biol. (2000) [Pubmed]
  26. Studies on substrate recognition by the budding yeast separase. Sullivan, M., Hornig, N.C., Porstmann, T., Uhlmann, F. J. Biol. Chem. (2004) [Pubmed]
  27. Caenorhabditis elegans EVL-14/PDS-5 and SCC-3 are essential for sister chromatid cohesion in meiosis and mitosis. Wang, F., Yoder, J., Antoshechkin, I., Han, M. Mol. Cell. Biol. (2003) [Pubmed]
  28. Mechanical link between cohesion establishment and DNA replication: Ctf7p/Eco1p, a cohesion establishment factor, associates with three different replication factor C complexes. Kenna, M.A., Skibbens, R.V. Mol. Cell. Biol. (2003) [Pubmed]
  29. Saccharomyces cerevisiae DNA polymerase epsilon and polymerase sigma interact physically and functionally, suggesting a role for polymerase epsilon in sister chromatid cohesion. Edwards, S., Li, C.M., Levy, D.L., Brown, J., Snow, P.M., Campbell, J.L. Mol. Cell. Biol. (2003) [Pubmed]
  30. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Blat, Y., Kleckner, N. Cell (1999) [Pubmed]
  31. Assaying the spindle checkpoint in the budding yeast Saccharomyces cerevisiae. Yellman, C.M., Burke, D.J. Methods Mol. Biol. (2004) [Pubmed]
WikiGenes - Universities