The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

umuC  -  translesion error-prone DNA polymerase V...

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK1172, JW1173, uvm
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of umuC


High impact information on umuC

  • Homologs of the umuC gene were found on native conjugative plasmids, which often carry multiple antibiotic-resistant genes [6].
  • To initiate a biochemical characterization of the role of these proteins, we have developed a plasmid system that gives efficient expression of the umuD and umuC genes [3].
  • The product of the umuC gene is required for UV and chemical mutagenesis in Escherichia coli [7].
  • By the use of the Mud(Ap, lac) bacteriophage, we have obtained an operon fusion of the lac structural genes to the promoter/regulatory region of the umuC gene [7].
  • Further, we found that a significant fraction of potentially lethal thymine glycols could be ultraviolet-reactivated in an umuC lexA recA-independent manner, suggesting the existence of an as yet uncharacterized damage-inducible SOS-independent mode of thymine glycol repair [8].

Chemical compound and disease context of umuC


Biological context of umuC


Associations of umuC with chemical compounds

  • In fact expression of the umuC gene was induced by lower concentrations of MNNG in the presence of o-vanillin [18].
  • In addition, we found that photoreactivation of cyclobutane pyrimidine dimers reversed umuC induction to the same extent as it reversed mutagenesis [19].
  • The inducing activity of quercetin is higher for sfiA than for recA and umuC genes in the absence of S9 mix [20].
  • Further experiments indicated that chloroquine-induced reversion frequencies were essentially identical in wild-type, recA, umuC and uvrC derivatives of DG1669, as well as in strains carrying the mutation enhancing plasmid pKM101, over a wide range of doses (0-1200 micrograms/plate) [21].
  • Introduction of a umuC::Tn5 mutation into a strain carrying the lacZ19136 marker resulted in enhanced reversion by 9-aminoacridine and the acridine half-mustard ICR191, whereas reversion of the lacZ19124 marker was decreased (but not abolished) in a umuC strain [22].

Regulatory relationships of umuC

  • (1) The umuC gene is inducible by Blm and the induction is regulated by the lexA and recA genes [2].
  • The umuC gene fusion was induced at lower concentrations of 4-quinolone than was the sfiA gene fusion [23].
  • The plasmid pSK1002 bears an umuC::lacZ fusion in which lacZ is under the control of the umuC promoter and regulated under the SOS regulon [24].

Other interactions of umuC

  • From these and the previous results of genetic and biochemical studies on the cloned genes, we conclude that the former is the umuD and the latter is the umuC gene [25].
  • We found the following sequence: fabD purB atte14 umuC [26].
  • The mutants can be classified into three groups by the location of the mutations, umuA, umuB and umuC [27].
  • A small fraction of the recF recB-independent repair of DSG is dependent upon the umuC gene, and may define an error-prone pathway of postreplication repair [28].
  • Crosslink repair in uvrA bacteria is reduced but not eliminated by a mutation in the umuC gene [29].

Analytical, diagnostic and therapeutic context of umuC


  1. Suppressible base substitution mutations induced by angelicin (isopsoralen) in the Escherichia coli lacI gene: implications for the mechanism of SOS mutagenesis. Miller, S.S., Eisenstadt, E. J. Bacteriol. (1987) [Pubmed]
  2. Genetic activity of bleomycin in Escherichia coli. Yamamoto, K., Hiramoto, T., Shinagawa, H., Fujiwara, Y. Chem. Biol. Interact. (1984) [Pubmed]
  3. UmuD mutagenesis protein of Escherichia coli: overproduction, purification, and cleavage by RecA. Burckhardt, S.E., Woodgate, R., Scheuermann, R.H., Echols, H. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  4. An ovulation inducing agent containing clomiphene citrate causes DNA-strand breaks without SOS responses in Escherichia coli. Ohnishi, T., Ohashi, Y., Amano, I., Nozu, K. Mutat. Res. (1986) [Pubmed]
  5. The contribution of UDP-glucuronosyltransferase 1A9 on CYP1A2-mediated genotoxicity by aromatic and heterocyclic amines. Yueh, M.F., Nguyen, N., Famourzadeh, M., Strassburg, C.P., Oda, Y., Guengerich, F.P., Tukey, R.H. Carcinogenesis (2001) [Pubmed]
  6. Plasmid-encoded MucB protein is a DNA polymerase (pol RI) specialized for lesion bypass in the presence of MucA', RecA, and SSB. Goldsmith, M., Sarov-Blat, L., Livneh, Z. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  7. Inducibility of a gene product required for UV and chemical mutagenesis in Escherichia coli. Bagg, A., Kenyon, C.J., Walker, G.C. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  8. SOS processing of unique oxidative DNA damages in Escherichia coli. Laspia, M.F., Wallace, S.S. J. Mol. Biol. (1989) [Pubmed]
  9. Role of ruvAB genes in UV- and gamma-radiation and chemical mutagenesis in Escherichia coli. Sargentini, N.J., Smith, K.C. Mutat. Res. (1989) [Pubmed]
  10. Post-replication repair and recombination in uvrA umuC strains of Escherichia coli are enhanced by vanillin, an antimutagenic compound. Ohta, T., Watanabe, M., Shirasu, Y., Inoue, T. Mutat. Res. (1988) [Pubmed]
  11. Reduction of ENU-induced transversion mutations by the isoflavone genistein in Escherichia coli. Yang, Y., Fix, D. Mutat. Res. (2001) [Pubmed]
  12. Effect of deficiency in excision repair and umuC function on the mutagenicity with ethylene oxide in the lacI gene of E. coli. Kolman, A. Mutat. Res. (1985) [Pubmed]
  13. Mutagenesis and cellular responses to DNA damage. Walker, G.C., Kenyon, C.J., Bagg, A., Langer, P.J., Shanabruch, W.G. National Cancer Institute monograph. (1982) [Pubmed]
  14. Biochemical analysis of UV mutagenesis in Escherichia coli by using a cell-free reaction coupled to a bioassay: identification of a DNA repair-dependent, replication-independent pathway. Cohen-Fix, O., Livneh, Z. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  15. umuDC and mucAB operons whose products are required for UV light- and chemical-induced mutagenesis: UmuD, MucA, and LexA proteins share homology. Perry, K.L., Elledge, S.J., Mitchell, B.B., Marsh, L., Walker, G.C. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  16. Much of spontaneous mutagenesis in Escherichia coli is due to error-prone DNA repair: implications for spontaneous carcinogenesis. Sargentini, N.J., Smith, K.C. Carcinogenesis (1981) [Pubmed]
  17. Cloning and characterization of the umu operon responsible for inducible mutagenesis in Escherichia coli. Shinagawa, H., Kato, T., Ise, T., Makino, K., Nakata, A. Gene (1983) [Pubmed]
  18. Inhibition of induction of adaptive response by o-vanillin in Escherichia coli B. Watanabe, K., Ohta, T., Watanabe, M., Kato, T., Shirasu, Y. Mutat. Res. (1990) [Pubmed]
  19. Photoreactivation of Escherichia coli reverses umuC induction by UV light. Brash, D.E., Haseltine, W.A. J. Bacteriol. (1985) [Pubmed]
  20. Influence of S9 mix in the induction of SOS system by quercetin. Llagostera, M., Garrido, S., Barbé, J., Guerrero, R., Rueff, J. Mutat. Res. (1987) [Pubmed]
  21. Frameshift mutagenesis by chloroquine in Escherichia coli and Salmonella typhimurium. Thomas, S.M., Silburn, K.A., MacPhee, D.G. Mutat. Res. (1987) [Pubmed]
  22. RecA-independent mutagenesis in Escherichia coli: effects of umuC and mucB mutations. Thomas, S.M., MacPhee, D.G. Mutagenesis (1986) [Pubmed]
  23. Induction of the SOS gene (umuC) by 4-quinolone antibacterial drugs. Power, E.G., Phillips, I. J. Med. Microbiol. (1992) [Pubmed]
  24. E. coli BW535, a triple mutant for the DNA repair genes xth, nth, and nfo, chronically induces the SOS response. Janion, C., Sikora, A., Nowosielska, A., Grzesiuk, E. Environ. Mol. Mutagen. (2003) [Pubmed]
  25. Structural analysis of the umu operon required for inducible mutagenesis in Escherichia coli. Kitagawa, Y., Akaboshi, E., Shinagawa, H., Horii, T., Ogawa, H., Kato, T. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  26. Excision and reintegration of the Escherichia coli K-12 chromosomal element e14. Brody, H., Greener, A., Hill, C.W. J. Bacteriol. (1985) [Pubmed]
  27. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Kato, T., Shinoura, Y. Mol. Gen. Genet. (1977) [Pubmed]
  28. recA-dependent DNA repair in UV-irradiated Escherichia coli. Smith, K.C., Wang, T.V., Sharma, R.C. J. Photochem. Photobiol. B, Biol. (1987) [Pubmed]
  29. Further characterization of repair of 8-methoxypsoralen crosslinks in UV-excision-defective Escherichia coli. Bridges, B.A. Mutat. Res. (1984) [Pubmed]
  30. Mutational spectrum analysis of umuC-independent and umuC-dependent gamma-radiation mutagenesis in Escherichia coli. Sargentini, N.J., Smith, K.C. Mutat. Res. (1989) [Pubmed]
  31. Identification of a umuDC locus in Salmonella typhimurium LT2. Smith, C.M., Eisenstadt, E. J. Bacteriol. (1989) [Pubmed]
WikiGenes - Universities