The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

rRNA Operon

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of rRNA Operon

 

High impact information on rRNA Operon

  • The synthesis rate of galactokinase (or beta-galactosidase) from the fused rrn-gal (or rrn-lac) operon relative to the total protein synthesis rate increased with increasing growth rate, as expected from the transcriptional activity of rRNA operons [6].
  • We have also shown that in the present in vitro transcription system, guanosine tetraphosphate (ppGpp) inhibits the synthesis of full-sized RNAs from both start sites in each rRNA operon [7].
  • By transforming the rplX mutant with a plasmid carrying the rrnB operon and by selecting for temperature-resistant transformants we obtained two spontaneous suppressor mutants in the gene for 23S rRNA [8].
  • Growth hormone synthesis was dependent on induction of the mutated rrnB operon [9].
  • We found that a multicopy plasmid (pBR322) carrying an heavily transcribed portion of the rrnB operon cannot be transformed in topA mutants unless RNase H is overproduced [10].
 

Chemical compound and disease context of rRNA Operon

 

Biological context of rRNA Operon

 

Anatomical context of rRNA Operon

 

Associations of rRNA Operon with chemical compounds

  • The use of H. halobium, which possess only one chromosomal copy of rRNA operon, allowed isolation of a number of linezolid-resistance mutations in rRNA [18].
  • These studies demonstrate this 16S rRNA mutation is responsible for amikacin resistance in M. abscessus, which has only one copy of the rRNA operon [19].
  • To date, B. bacilliformis and R. sphaeroides are the only known eubacteria which have an fMet tRNA-encoding gene within the 3' end of their rRNA operons [20].
  • Both plasmids contain the lacIts gene, the trc promoter, the two transcription terminators of the rrnB operon, and a tetracycline selection marker [21].
  • Significant homology between the rRNA genes of these strains was demonstrated by the ability of an rRNA operon from strain PCC 6301, interrupted by a spectinomycin and streptomycin resistance marker, to transform strain PCC 7942 by recombining with and replacing an endogenous rRNA operon [22].
 

Gene context of rRNA Operon

  • The rpoB gene is of the same polarity as the rRNA operons [23].
  • Unlike rRNA operons which also display upstream activation, sequences responsible for this effect in the leuV promoter are separated into two regions, one between -76 and -47, and the other between -45 and -39 [24].
  • In this strain, lacZ expression from Pspc was compared at the enzyme activity and mRNA levels with a previously constructed strain in which lacZ was linked to the tandem P1 and P2 promoters of the rrnB operon [25].
  • Transcriptional polarity in rRNA operons of Escherichia coli nusA and nusB mutant strains [26].
  • The murI gene corresponds to a previously sequenced open reading frame, ORF1 (J. Brosius, T. J. Dull, D. D. Sleeter, and H. F. Noller. J. Bacteriol. 148:107-127, 1987), located between the btuB gene, encoding the vitamin B12 outer membrane receptor protein, and the rrnB operon, which contains the genes for 16S, 23S, and 5S rRNAs [27].
 

Analytical, diagnostic and therapeutic context of rRNA Operon

  • RT-PCR assays targeting primary transcripts from C. trachomatis rRNA operons, and mRNA from the bacterial omp1, hsp60, glyQS, and r-protein S5 and L5 genes, were used to characterize viability/metabolic activity [28].
  • The rRNA mutations were induced by segment-directed randomly mutagenic PCR treatment of a cloned rrnB operon, followed by subcloning of the mutagenesis products and transformation of strains containing different nonsense mutations in the Escherichia coli trpA gene [29].

References

  1. Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both non-ribosomal and ribosomal RNA antitermination. Torres, M., Condon, C., Balada, J.M., Squires, C., Squires, C.L. EMBO J. (2001) [Pubmed]
  2. Promoters of Mycoplasma capricolum ribosomal RNA operons: identical activities but different regulation in homologous and heterologous cells. Gafny, R., Hyman, H.C., Razin, S., Glaser, G. Nucleic Acids Res. (1988) [Pubmed]
  3. Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase. Lewicki, B.T., Margus, T., Remme, J., Nierhaus, K.H. J. Mol. Biol. (1993) [Pubmed]
  4. A cyanobacterial strain with all chromosomal rRNA operons inactivated: a single nucleotide mutation of 23S rRNA confers temperature-sensitive phenotypes. Monshupanee, T., Fa-Aroonsawat, S., Chungjatupornchai, W. Microbiology (Reading, Engl.) (2006) [Pubmed]
  5. rRNA operon restriction derived taxa for Streptomyces (RiDiTS). Fulton, T.R., Losada, M.C., Fluder, E.M., Chou, G.T. FEMS Microbiol. Lett. (1995) [Pubmed]
  6. Growth-rate-dependent regulation of ribosome synthesis in E. coli: expression of the lacZ and galK genes fused to ribosomal promoters. Miura, A., Krueger, J.H., Itoh, S., de Boer, H.A., Nomura, M. Cell (1981) [Pubmed]
  7. Identification of initiation sites for the in vitro transcription of rRNA operons rrnE and rrnA in E. coli. Gilbert, S.F., de Boer, H.A., Nomura, M. Cell (1979) [Pubmed]
  8. A temperature-sensitive mutant in the gene rplX for ribosomal protein L24 and its suppression by spontaneous mutations in a 23S rRNA gene of Escherichia coli. Nishi, K., Schnier, J. EMBO J. (1986) [Pubmed]
  9. Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Hui, A., de Boer, H.A. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  10. DNA topoisomerases regulate R-loop formation during transcription of the rrnB operon in Escherichia coli. Massé, E., Phoenix, P., Drolet, M. J. Biol. Chem. (1997) [Pubmed]
  11. Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action. Xiong, L., Kloss, P., Douthwaite, S., Andersen, N.M., Swaney, S., Shinabarger, D.L., Mankin, A.S. J. Bacteriol. (2000) [Pubmed]
  12. Chemical synthesis of a gene coding for human angiogenin, its expression in Escherichia coli and conversion of the product into its active form. Denèfle, P., Kovarik, S., Guitton, J.D., Cartwright, T., Mayaux, J.F. Gene (1987) [Pubmed]
  13. Nucleotide sequence between the fadB gene and the rrnA operon from Escherichia coli. Nakahigashi, K., Inokuchi, H. Nucleic Acids Res. (1990) [Pubmed]
  14. Pactamycin resistance mutations in functional sites of 16 S rRNA. Mankin, A.S. J. Mol. Biol. (1997) [Pubmed]
  15. Stable transformation of the Xylella fastidiosa citrus variegated chlorosis strain with oriC plasmids. Monteiro, P.B., Teixeira, D.C., Palma, R.R., Garnier, M., Bové, J.M., Renaudin, J. Appl. Environ. Microbiol. (2001) [Pubmed]
  16. Point mutations in the leader boxA of a plasmid-encoded Escherichia coli rrnB operon cause defective antitermination in vivo. Heinrich, T., Condon, C., Pfeiffer, T., Hartmann, R.K. J. Bacteriol. (1995) [Pubmed]
  17. Strategies used by pathogenic and nonpathogenic mycobacteria to synthesize rRNA. Gonzalez-y-Merchand, J.A., Garcia, M.J., Gonzalez-Rico, S., Colston, M.J., Cox, R.A. J. Bacteriol. (1997) [Pubmed]
  18. Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. Kloss, P., Xiong, L., Shinabarger, D.L., Mankin, A.S. J. Mol. Biol. (1999) [Pubmed]
  19. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. Prammananan, T., Sander, P., Brown, B.A., Frischkorn, K., Onyi, G.O., Zhang, Y., Böttger, E.C., Wallace, R.J. J. Infect. Dis. (1998) [Pubmed]
  20. Characterization of the fMet initiator tRNA gene of Bartonella bacilliformis. Minnick, M.F. Gene (1993) [Pubmed]
  21. A tightly regulated high level expression vector that utilizes a thermosensitive lac repressor: production of the human T cell receptor V beta 5.3 in Escherichia coli. Andrews, B., Adari, H., Hannig, G., Lahue, E., Gosselin, M., Martin, S., Ahmed, A., Ford, P.J., Hayman, E.G., Makrides, S.C. Gene (1996) [Pubmed]
  22. Genetic relationship of two highly studied Synechococcus strains designated Anacystis nidulans. Golden, S.S., Nalty, M.S., Cho, D.S. J. Bacteriol. (1989) [Pubmed]
  23. The Euglena gracilis chloroplast rpoB gene. Novel gene organization and transcription of the RNA polymerase subunit operon. Yepiz-Plascencia, G.M., Radebaugh, C.A., Hallick, R.B. Nucleic Acids Res. (1990) [Pubmed]
  24. Sequence determinants for promoter strength in the leuV operon of Escherichia coli. Bauer, B.F., Kar, E.G., Elford, R.M., Holmes, W.M. Gene (1988) [Pubmed]
  25. Expression of lacZ from the promoter of the Escherichia coli spc operon cloned into vectors carrying the W205 trp-lac fusion. Liang, S.T., Dennis, P.P., Bremer, H. J. Bacteriol. (1998) [Pubmed]
  26. Transcriptional polarity in rRNA operons of Escherichia coli nusA and nusB mutant strains. Quan, S., Zhang, N., French, S., Squires, C.L. J. Bacteriol. (2005) [Pubmed]
  27. Identification of the Escherichia coli murI gene, which is required for the biosynthesis of D-glutamic acid, a specific component of bacterial peptidoglycan. Doublet, P., van Heijenoort, J., Mengin-Lecreulx, D. J. Bacteriol. (1992) [Pubmed]
  28. Synovial Chlamydia trachomatis in patients with reactive arthritis/Reiter's syndrome are viable but show aberrant gene expression. Gérard, H.C., Branigan, P.J., Schumacher, H.R., Hudson, A.P. J. Rheumatol. (1998) [Pubmed]
  29. Variety of nonsense suppressor phenotypes associated with mutational changes at conserved sites in Escherichia coli ribosomal RNA. Murgola, E.J., Pagel, F.T., Hijazi, K.A., Arkov, A.L., Xu, W., Zhao, S.Q. Biochem. Cell Biol. (1995) [Pubmed]
 
WikiGenes - Universities