The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Exostoses


High impact information on Exostoses


Chemical compound and disease context of Exostoses

  • The neurologic complication was caused by an exostosis, arising from the C2 right hemilamina, compressing the spinal cord [11].
  • Rats that were given both BAPN and phenytoin produced similar exostoses as rats that were given BAPN alone [4].
  • Two measures of heavy occlusal function--periodontal ligament (PDL) width and occlusal attrition--were analyzed for their relationship to three parameters of buccal alveolar bone (exostoses, lipping, and overall thickness) [12].
  • The exostosis was excised 10 weeks after initial presentation, with warfarin being continued for four weeks postoperatively [13].
  • Skeletal fluorosis (mottled teeth in pups, bony exostoses in adults) followed use of a commercial dog food later found to contain 460 ppm fluoride (F) from rock phosphate added as a mineral source [14].

Biological context of Exostoses


Anatomical context of Exostoses


Gene context of Exostoses

  • Two homologous genes, EXT1 and EXT2, responsible for the development of benign multiple cartilagenous bone tumors (exostoses) on the long bones, have been identified in the past 2 years [22].
  • Because collagen molecules are important for tissue remodeling during physiologic growth and differentiation, both COL12A1 and COL4A5 constitute good candidate target genes in the pathogenesis of subungual exostosis [23].
  • The donor patients' ages ranged from 1 to 90 years and their disease states included congenital limb anomalies, exostosis, and osteo- and rheumatoid arthritis [24].
  • Finally, we propose that the development of exostoses in the human Hereditary Multiple Exostoses syndrome can be attributed to activation of Ihh signaling [25].
  • The content of urokinase-type plasminogen activator increased, while the concentration of tissue-type plasminogen activator decreased in bone tumors of various histological compositions compared to osteochondral exostoses [26].

Analytical, diagnostic and therapeutic context of Exostoses


  1. Ext-mutation analysis in Italian sporadic and hereditary osteochondromas. Gigante, M., Matera, M.G., Seripa, D., Izzo, A.M., Venanzi, R., Giannotti, A., Digilio, M.C., Gravina, C., Lazzari, M., Monteleone, G., Monteleone, M., Dallapiccola, B., Fazio, V.M. Int. J. Cancer (2001) [Pubmed]
  2. Sutural exostoses, rib hyperostoses, craniosynostosis, mental retardation with focal fat deposition: Proteus syndrome? Christianson, A.L., Van Allen, M.I. Am. J. Med. Genet. (1996) [Pubmed]
  3. Bone scintigraphy in hereditary multiple exostoses. Epstein, D.A., Levin, E.J. AJR. American journal of roentgenology. (1978) [Pubmed]
  4. Phenytoin inhibition: failure to inhibit periosteal responses to lathyrogen. Fallon, M.D., Yeager, V.L., Taylor, J.L. Arch. Pathol. Lab. Med. (1977) [Pubmed]
  5. Scintigraphy of benign exostoses and exostotic chondrosarcomas. Hudson, T.M., Chew, F.S., Manaster, B.J. AJR. American journal of roentgenology. (1983) [Pubmed]
  6. Mutations in the EXT1 and EXT2 genes in hereditary multiple exostoses. Wuyts, W., Van Hul, W., De Boulle, K., Hendrickx, J., Bakker, E., Vanhoenacker, F., Mollica, F., Lüdecke, H.J., Sayli, B.S., Pazzaglia, U.E., Mortier, G., Hamel, B., Conrad, E.U., Matsushita, M., Raskind, W.H., Willems, P.J. Am. J. Hum. Genet. (1998) [Pubmed]
  7. Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Stickens, D., Zak, B.M., Rougier, N., Esko, J.D., Werb, Z. Development (2005) [Pubmed]
  8. Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. Toyoda, H., Kinoshita-Toyoda, A., Fox, B., Selleck, S.B. J. Biol. Chem. (2000) [Pubmed]
  9. Molecular basis of multiple exostoses: mutations in the EXT1 and EXT2 genes. Wuyts, W., Van Hul, W. Hum. Mutat. (2000) [Pubmed]
  10. Cytoskeletal abnormalities in chondrocytes with EXT1 and EXT2 mutations. Bernard, M.A., Hogue, D.A., Cole, W.G., Sanford, T., Snuggs, M.B., Montufar-Solis, D., Duke, P.J., Carson, D.D., Scott, A., Van Winkle, W.B., Hecht, J.T. J. Bone Miner. Res. (2000) [Pubmed]
  11. Paraparesis in hereditary multiple exostoses: case report. Ferrari, G., Taddei, L., Vivenza, C., Rossi, G. Neurology (1979) [Pubmed]
  12. Buccal alveolar exostoses: prevalence, characteristics, and evidence for buttressing bone formation. Horning, G.M., Cohen, M.E., Neils, T.A. J. Periodontol. (2000) [Pubmed]
  13. Deep venous thrombosis caused by femoral exostosis. Keeling, S.L., Numa, A., Wilde, P., Davis, J., McLellan, J. Med. J. Aust. (1993) [Pubmed]
  14. Lack of effect of fluoride on reproductive performance and development in Shetland sheepdogs. Schellenberg, D., Marks, T.A., Metzler, C.M., Oostveen, J.A., Morey, M.J. Veterinary and human toxicology. (1990) [Pubmed]
  15. Reevaluation of a genetic model for the development of exostosis in hereditary multiple exostosis. Hall, C.R., Cole, W.G., Haynes, R., Hecht, J.T. Am. J. Med. Genet. (2002) [Pubmed]
  16. Scintigraphic findings of multiple osteochondromas. Shih, W.J., Riley, C.N., Domstad, P.A., DeLand, F.H. Clinical nuclear medicine. (1986) [Pubmed]
  17. Heparan sulfate abnormalities in exostosis growth plates. Hecht, J.T., Hall, C.R., Snuggs, M., Hayes, E., Haynes, R., Cole, W.G. Bone (2002) [Pubmed]
  18. Structure, chromosomal location, and expression profile of EXTR1 and EXTR2, new members of the multiple exostoses gene family. Saito, T., Seki, N., Yamauchi, M., Tsuji, S., Hayashi, A., Kozuma, S., Hori, T. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  19. Prevalence of external auditory canal exostoses in Australian surfboard riders. Hurst, W., Bailey, M., Hurst, B. The Journal of laryngology and otology. (2004) [Pubmed]
  20. Ossicular discontinuity and exostoses in Proteus syndrome: a case report. Doherty, J.K., Maceri, D.R. The Annals of otology, rhinology, and laryngology. (2005) [Pubmed]
  21. Alveolar ridge exostoses formation as a response to habitual occlusal stress: a case report. Ries, W.L., Zone, M.P. Virginia dental journal. (1983) [Pubmed]
  22. Identification of a third EXT-like gene (EXTL3) belonging to the EXT gene family. Van Hul, W., Wuyts, W., Hendrickx, J., Speleman, F., Wauters, J., De Boulle, K., Van Roy, N., Bossuyt, P., Willems, P.J. Genomics (1998) [Pubmed]
  23. Rearrangement of the COL12A1 and COL4A5 genes in subungual exostosis: molecular cytogenetic delineation of the tumor-specific translocation t(X;6)(q13-14;q22). Storlazzi, C.T., Wozniak, A., Panagopoulos, I., Sciot, R., Mandahl, N., Mertens, F., Debiec-Rychter, M. Int. J. Cancer (2006) [Pubmed]
  24. Characterization of human bone cells in culture. Auf'mkolk, B., Hauschka, P.V., Schwartz, E.R. Calcif. Tissue Int. (1985) [Pubmed]
  25. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Koziel, L., Kunath, M., Kelly, O.G., Vortkamp, A. Dev. Cell (2004) [Pubmed]
  26. Plasminogen activators and their inhibitor in bone tumors and tumor-like damages. Kushlinskii, N.E., Yusifov, A.I., Gershtein, E.S., Solov'ev, Y.N., Trapeznikov, N.N. Bull. Exp. Biol. Med. (2001) [Pubmed]
  27. A clinicopathologic study of bony spurs on the pes anserinus. Ugai, K., Sato, S., Matsumoto, K., Matsubara, T., Mizuno, K., Hirohata, K. Clin. Orthop. Relat. Res. (1988) [Pubmed]
  28. Thoracic vertebral body exostosis as a cause of myelopathy in a patient with hereditary multiple exostoses. Mermer, M.J., Gupta, M.C., Salamon, P.B., Benson, D.R. Journal of spinal disorders & techniques. (2002) [Pubmed]
WikiGenes - Universities