The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

AVP  -  arginine vasopressin

Homo sapiens

Synonyms: ADH, ARVP, AVP-NPII, AVRP, VP, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of AVP

 

Psychiatry related information on AVP

  • Measured by radioimmunoassay with a synthetic Leu-AVP standard, serum Leu-AVP levels were elevated in all three children and further increased during water deprivation to as high as 30 times normal [2].
  • In preclinical studies, arginine vasopressin (AVP) has been shown to increase a range of social behaviors, including affiliation and attachment, via the V(1a) receptor (AVPR1A) in the brain [5].
  • However, there is an accumulating body of evidence to support a significant role for AVP in the regulation of pituitary-adrenal activity in health and also in depressive disorder [6].
  • The polyuria and urinary concentrating defects associated with an abnormal nightly-increase in AVP in patients with nocturnal enuresis may partly be due to a lack of vasopressin-mediated AQP2 expression since treatment with desmopressin in these patients have normalised their nocturnal urine production [7].
  • Plasma cortisol, PRL, ACTH, AVP and corticotrophin releasing hormone responses to direct current cardioversion and electroconvulsive therapy [8].
 

High impact information on AVP

  • Furthermore, the ANP neurons inhibit AVP release leading to diuresis and decreased ACTH release [9].
  • Autosomal dominant hypercholesterolemia (ADH; OMIM144400), a risk factor for coronary heart disease, is characterized by an increase in low-density lipoprotein cholesterol levels that is associated with mutations in the genes LDLR (encoding low-density lipoprotein receptor) or APOB (encoding apolipoprotein B) [10].
  • Letter: Problems with lithium as treatment for inappropriate ADH secretion [11].
  • Injection of AdAVP into the supraoptic nuclei (SON) of the hypothalamus resulted in expression of AVP in magnocellular neurons [12].
  • In the present study, we have used an Ad encoding the arginine vasopressin cDNA (AdAVP) in an AVP-deficient animal model of diabetes insipidus (the Brattleboro rat), which allowed us to monitor chronically the success of the gene therapy treatment by noninvasive assays [12].
 

Chemical compound and disease context of AVP

 

Biological context of AVP

 

Anatomical context of AVP

  • This may reflect lateralized hypothalamic and/or suprahypothalamic function resulting in CRH-responsive lateralized secretion of AVP from parvocellular and/or magnocellular axons in the median eminence and the posterior pituitary [22].
  • AVP not only recruited AQP2, but also AKAP18delta to the plasma membrane [23].
  • Membrane preparations from COS.M6 cells or human embryonic kidney 293 cells expressing these mutants did not respond with an increase in adenylyl cyclase activity in response to AVP, which is in contrast to membranes from cells expressing the wild-type [20].
  • Arginine vasopressin (AVP) stimulates cortisol secretion through its vascular type V(1a) receptor in the adrenal glands, in addition to stimulating ACTH secretion through pituitary V(3) receptor [24].
  • The topographic distribution of GA-ir neuronal structures in the hypothalamus and the colocalization of GA, principally with AVP and to a lesser extent with OXY, in some hypothalamic nuclei constitute anatomical evidence that this neuropeptide may be involved in the regulation of endocrine, autonomic, and behavioural homeostatic responses [25].
 

Associations of AVP with chemical compounds

  • The V2 receptor expressed in transfected cells labeled with [32P] orthophosphate was phosphorylated following the addition of 100 nM arginine vasopressin (AVP) [18].
  • A pronounced difference was observed for this mutant V2R between the stimulation of adenylyl cyclase activity promoted by AVP and the V2 vasopressin receptor agonist deamino[Cys1,D-Arg8]-vasopressin, suggesting an involvement of Gly201 in the selectivity of the receptor for different ligands [26].
  • In those patients having low-AVP levels before the therapy, circulating AVP concentration returned to normal (>4 pg/ml), and the hypercalciuria was resolved in the hypercalciuric patients (calcium/creatinine ratio <0.2) [27].
  • The roles of AVP and ANP under pathophysiological conditions have been reported [21].
  • CONCLUSION: Four weeks of lithium therapy in healthy volunteers produced a small but significant reduction in dDAVP-stimulated urinary concentrating ability, which appears to be mediated by the inhibition of AVP-stimulated translocation of cytoplasmic AQP2 to the collecting tubule apical membrane via inhibition of adenyl cyclase [28].
  • Treatment efficacy was assessed by the increase in mean arterial blood pressure and the extent of norepinephrine reduction during the first 24 hrs of AVP therapy [29].
 

Physical interactions of AVP

  • Our data establish that a single residue, Arg46, is critical for AVP binding to the V1aR [30].
  • AVP binds to V2-receptors and induces the translocation of aquaporin-2 water channels (AQP-2) into the apical plasma membrane of principal cells [31].
  • Leu-AVP was a weak agonist with approximately 30-fold reduced binding to the human V2 receptor [2].
  • Similarly, CRH pretreatment increased the percentage of corticotropes that bound AVP [32].
  • Thus, these studies demonstrate that glucocorticoids rapidly inhibit CRH-receptor binding in a domain that is not affected by AVP potentiation of ACTH release [33].
 

Co-localisations of AVP

  • In rats, VP is colocalized with galanin (GAL) in several brain regions [34].
 

Regulatory relationships of AVP

  • Another multihormonal cell may function during cold stress to release both ACTH and thyroid-stimulating hormone (TSH) under the influence of AVP [35].
  • Consistent with results obtained from animal studies, we also found VIP expressing neurons were born earlier than AVP expressing neurons [36].
  • The cells of the supraoptic nucleus and PVN produce AVP or oxytocin and coexpress tyrosine hydroxylase [37].
  • The combination of CCK and meal-induced gastric distention did not stimulate increases in plasma AVP levels in excess of those produced by CCK administration alone [38].
  • Vasopressin or AVP regulates water reabsorption by the kidney inner medullary collecting duct (IMCD) through the insertion and removal of aquaporin (AQP) 2 water channels into the IMCD apical membrane [39].
 

Other interactions of AVP

  • The neurohypophysial hormone arginine vasopressin (AVP) is a cyclic nonpeptide whose actions are mediated by the stimulation of specific G protein--coupled membrane receptors pharmacologically classified into V1-vascular (V1R), V2-renal (V2R) and V3-pituitary (V3R) AVP receptor subtypes [40].
  • The inhibitory effect of chronic osmotic stimulation on ACTH secretion in spite of high circulating levels of VP is probably the result of diminished activity of parvicellular PVN neurons and downregulation of pituitary VP receptors [41].
  • Cold stress for 30 min also stimulates an increase in the percentage of immunoreactive corticotropes and cells that bind CRH or arginine vasopressin (AVP) [35].
  • Immunocytochemistry identified cellular OT and VP, and peptide secretion was measured in supernatants of SCCL cultures [42].
  • These data demonstrate the necessity of establishing well-designed protocols to use urinary AQP2 as a marker of AVP action [43].
 

Analytical, diagnostic and therapeutic context of AVP

  • In the control group, pOsm and plasma AVP increased only during the osmotic stimulus [44].
  • METHODS: In a crossover study of 14 healthy subjects, the effect of 24 hours of fasting was compared to a nonfasting control experiment on urinary excretion of AQP2 (u-AQP2), free water clearance (C(H(2)O)), plasma arginine vasopressin (AVP), urinary cyclic AMP (u-cAMP), and natriuretic peptides [45].
  • We and others have used this compound to study the role of AVP in various animal models [46].
  • CONCLUSION: A novel correlation of AM and AQP2 which overlays an AVP-AQP2 system may play a key role in fluid homeostasis during general anesthesia [47].
  • By immunoprecipitation and immunoblotting, we elucidated the phosphorylation pattern of green fluorescent protein-tagged AVP receptors and showed interactions with the specific kinases PKC and GRK5 that are agonist-, time- and receptor subtype-dependent [48].

References

  1. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Lolait, S.J., O'Carroll, A.M., McBride, O.W., Konig, M., Morel, A., Brownstein, M.J. Nature (1992) [Pubmed]
  2. Autosomal recessive familial neurohypophyseal diabetes insipidus with continued secretion of mutant weakly active vasopressin. Willcutts, M.D., Felner, E., White, P.C. Hum. Mol. Genet. (1999) [Pubmed]
  3. Close association of urinary excretion of aquaporin-2 with appropriate and inappropriate arginine vasopressin-dependent antidiuresis in hyponatremia in elderly subjects. Ishikawa Se, n.u.l.l., Saito, T., Fukagawa, A., Higashiyama, M., Nakamura, T., Kusaka, I., Nagasaka, S., Honda, K., Saito, T. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  4. Urinary excretion of aquaporin-2 water channel exaggerated dependent upon vasopressin in congestive heart failure. Funayama, H., Nakamura, T., Saito, T., Yoshimura, A., Saito, M., Kawakami, M., Ishikawa, S.E. Kidney Int. (2004) [Pubmed]
  5. Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Kim, S.J., Young, L.J., Gonen, D., Veenstra-VanderWeele, J., Courchesne, R., Courchesne, E., Lord, C., Leventhal, B.L., Cook, E.H., Insel, T.R. Mol. Psychiatry (2002) [Pubmed]
  6. Vasopressin as a target for antidepressant development: an assessment of the available evidence. Scott, L.V., Dinan, T.G. Journal of affective disorders. (2002) [Pubmed]
  7. Do aquaporins have a role in nocturnal enuresis? Frøkiaer, J., Nielsen, S. Scandinavian journal of urology and nephrology. Supplementum. (1997) [Pubmed]
  8. Plasma cortisol, PRL, ACTH, AVP and corticotrophin releasing hormone responses to direct current cardioversion and electroconvulsive therapy. Florkowski, C.M., Crozier, I.G., Nightingale, S., Evans, M.J., Ellis, M.J., Joyce, P., Donald, R.A. Clin. Endocrinol. (Oxf) (1996) [Pubmed]
  9. Atrial natriuretic peptide in brain and pituitary gland. Gutkowska, J., Antunes-Rodrigues, J., McCann, S.M. Physiol. Rev. (1997) [Pubmed]
  10. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Abifadel, M., Varret, M., Rabès, J.P., Allard, D., Ouguerram, K., Devillers, M., Cruaud, C., Benjannet, S., Wickham, L., Erlich, D., Derré, A., Villéger, L., Farnier, M., Beucler, I., Bruckert, E., Chambaz, J., Chanu, B., Lecerf, J.M., Luc, G., Moulin, P., Weissenbach, J., Prat, A., Krempf, M., Junien, C., Seidah, N.G., Boileau, C. Nat. Genet. (2003) [Pubmed]
  11. Letter: Problems with lithium as treatment for inappropriate ADH secretion. Handler, N., Uematsu, S., Long, D.M., Allen, G. N. Engl. J. Med. (1976) [Pubmed]
  12. Long-term gene therapy in the CNS: reversal of hypothalamic diabetes insipidus in the Brattleboro rat by using an adenovirus expressing arginine vasopressin. Geddes, B.J., Harding, T.C., Lightman, S.L., Uney, J.B. Nat. Med. (1997) [Pubmed]
  13. Nephrogenic diabetes insipidus. Bichet, D.G. Am. J. Med. (1998) [Pubmed]
  14. The property of a novel v2 receptor mutant in a patient with nephrogenic diabetes insipidus. Inaba, S., Hatakeyama, H., Taniguchi, N., Miyamori, I. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  15. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Robben, J.H., Knoers, N.V., Deen, P.M. Am. J. Physiol. Renal Physiol. (2006) [Pubmed]
  16. Synergistical effects of ovine corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) on the release of pro-opiomelanocortin (POMC) related peptides by pituitary adenoma of a patient with Nelson's syndrome in vitro. Chan, J.S., Gaspar, L., Iguchi, H., Seidah, N.G., Ling, N., Chrétien, M. Clinical and investigative medicine. Médecine clinique et experimentale. (1984) [Pubmed]
  17. Plasma corticotrophin releasing hormone, vasopressin, ACTH and cortisol responses to acute myocardial infarction. Donald, R.A., Crozier, I.G., Foy, S.G., Richards, A.M., Livesey, J.H., Ellis, M.J., Mattioli, L., Ikram, H. Clin. Endocrinol. (Oxf) (1994) [Pubmed]
  18. Phosphorylation of the V2 vasopressin receptor. Innamorati, G., Sadeghi, H., Eberle, A.N., Birnbaumer, M. J. Biol. Chem. (1997) [Pubmed]
  19. Molecular cloning, sequencing, and functional expression of a cDNA encoding the human V1a vasopressin receptor. Thibonnier, M., Auzan, C., Madhun, Z., Wilkins, P., Berti-Mattera, L., Clauser, E. J. Biol. Chem. (1994) [Pubmed]
  20. Vasopressin V2 receptor mutants that cause X-linked nephrogenic diabetes insipidus: analysis of expression, processing, and function. Oksche, A., Schülein, R., Rutz, C., Liebenhoff, U., Dickson, J., Müller, H., Birnbaumer, M., Rosenthal, W. Mol. Pharmacol. (1996) [Pubmed]
  21. Physiological effects of vasopressin and atrial natriuretic peptide in the collecting duct. Inoue, T., Nonoguchi, H., Tomita, K. Cardiovasc. Res. (2001) [Pubmed]
  22. Inferior petrosal sinus sampling in healthy subjects reveals a unilateral corticotropin-releasing hormone-induced arginine vasopressin release associated with ipsilateral adrenocorticotropin secretion. Kalogeras, K.T., Nieman, L.K., Friedman, T.C., Doppman, J.L., Cutler, G.B., Chrousos, G.P., Wilder, R.L., Gold, P.W., Yanovski, J.A. J. Clin. Invest. (1996) [Pubmed]
  23. Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressin-induced aquaporin-2 shuttle in renal principal cells. Henn, V., Edemir, B., Stefan, E., Wiesner, B., Lorenz, D., Theilig, F., Schmitt, R., Vossebein, L., Tamma, G., Beyermann, M., Krause, E., Herberg, F.W., Valenti, G., Bachmann, S., Rosenthal, W., Klussmann, E. J. Biol. Chem. (2004) [Pubmed]
  24. Eutopic overexpression of vasopressin v1a receptor in adrenocorticotropin-independent macronodular adrenal hyperplasia. Mune, T., Murase, H., Yamakita, N., Fukuda, T., Murayama, M., Miura, A., Suwa, T., Hanafusa, J., Daido, H., Morita, H., Yasuda, K. J. Clin. Endocrinol. Metab. (2002) [Pubmed]
  25. Galanin immunoreactive neurons in the human hypothalamus: colocalization with vasopressin-containing neurons. Gai, W.P., Geffen, L.B., Blessing, W.W. J. Comp. Neurol. (1990) [Pubmed]
  26. Biochemical basis of partial nephrogenic diabetes insipidus phenotypes. Sadeghi, H., Robertson, G.L., Bichet, D.G., Innamorati, G., Birnbaumer, M. Mol. Endocrinol. (1997) [Pubmed]
  27. Low-calcium diet in hypercalciuric enuretic children restores AQP2 excretion and improves clinical symptoms. Valenti, G., Laera, A., Gouraud, S., Pace, G., Aceto, G., Penza, R., Selvaggi, F.P., Svelto, M. Am. J. Physiol. Renal Physiol. (2002) [Pubmed]
  28. Lithium-induced reduction in urinary concentrating ability and urinary aquaporin 2 (AQP2) excretion in healthy volunteers. Walker, R.J., Weggery, S., Bedford, J.J., McDonald, F.J., Ellis, G., Leader, J.P. Kidney Int. (2005) [Pubmed]
  29. Comparison of two dose regimens of arginine vasopressin in advanced vasodilatory shock. Luckner, G., Mayr, V.D., Jochberger, S., Wenzel, V., Ulmer, H., Hasibeder, W.R., Dünser, M.W. Crit. Care Med. (2007) [Pubmed]
  30. A single residue (arg46) located within the N-terminus of the V1a vasopressin receptor is critical for binding vasopressin but not peptide or nonpeptide antagonists. Hawtin, S.R., Wesley, V.J., Parslow, R.A., Simms, J., Miles, A., McEwan, K., Wheatley, M. Mol. Endocrinol. (2002) [Pubmed]
  31. The effect of anti-diuretic hormone on the endolymphatic sac of the inner ear. Kumagami, H., Loewenheim, H., Beitz, E., Wild, K., Schwartz, H., Yamashita, K., Schultz, J., Paysan, J., Zenner, H.P., Ruppersberg, J.P. Pflugers Arch. (1998) [Pubmed]
  32. Hypothalamic regulatory peptides and their receptors: cytochemical studies of their role in regulation at the adenohypophyseal level. Childs, G.V., Westlund, K.N., Tibolt, R.E., Lloyd, J.M. Journal of electron microscopy technique. (1991) [Pubmed]
  33. Rapid corticosterone inhibition of corticotropin-releasing hormone binding and adrenocorticotropin release by enriched populations of corticotropes: counteractions by arginine vasopressin and its second messengers. Childs, G.V., Unabia, G. Endocrinology (1990) [Pubmed]
  34. Galanin antagonizes vasopressin-stimulated flank marking in male golden hamsters. Ferris, C.F., Delville, Y., Bonigut, S., Miller, M.A. Brain Res. (1999) [Pubmed]
  35. Structure-function correlates in the corticotropes of the anterior pituitary. Childs, G.V. Frontiers in neuroendocrinology. (1992) [Pubmed]
  36. Neurotensin expressing neurons developed earlier than vasoactive intestinal polypeptide and vasopressin expressing neurons in the human suprachiasmatic nucleus. Xu, H., Hu, X.Y., Wu, L., Zhou, J.N. Neurosci. Lett. (2003) [Pubmed]
  37. Ageing of the human hypothalamus. Swaab, D.F. Horm. Res. (1995) [Pubmed]
  38. Neurohypophyseal secretion in response to cholecystokinin but not meal-induced gastric distention in humans. Miaskiewicz, S.L., Stricker, E.M., Verbalis, J.G. J. Clin. Endocrinol. Metab. (1989) [Pubmed]
  39. Modulation of vasopressin-elicited water transport by trafficking of aquaporin2-containing vesicles. Ward, D.T., Hammond, T.G., Harris, H.W. Annu. Rev. Physiol. (1999) [Pubmed]
  40. The basic and clinical pharmacology of nonpeptide vasopressin receptor antagonists. Thibonnier, M., Coles, P., Thibonnier, A., Shoham, M. Annu. Rev. Pharmacol. Toxicol. (2001) [Pubmed]
  41. Regulation of pituitary ACTH secretion during chronic stress. Aguilera, G. Frontiers in neuroendocrinology. (1994) [Pubmed]
  42. Oxytocin synthesis and oxytocin receptor expression by cell lines of human small cell carcinoma of the lung stimulate tumor growth through autocrine/paracrine signaling. Péqueux, C., Breton, C., Hendrick, J.C., Hagelstein, M.T., Martens, H., Winkler, R., Geenen, V., Legros, J.J. Cancer Res. (2002) [Pubmed]
  43. Urinary excretion of aquaporin-2 water channel protein in human and rat. Rai, T., Sekine, K., Kanno, K., Hata, K., Miura, M., Mizushima, A., Marumo, F., Sasaki, S. J. Am. Soc. Nephrol. (1997) [Pubmed]
  44. Effect of plasma osmolality on pituitary-adrenal responses to corticotropin-releasing hormone and atrial natriuretic peptide changes in central diabetes insipidus. Elias, L.L., Antunes-Rodrigues, J., Elias, P.C., Moreira, A.C. J. Clin. Endocrinol. Metab. (1997) [Pubmed]
  45. Down-regulation of urinary AQP2 and unaffected response to hypertonic saline after 24 hours of fasting in humans. Starklint, J., Bech, J.N., Pedersen, E.B. Kidney Int. (2005) [Pubmed]
  46. Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands. Serradeil-Le Gal, C., Wagnon, J., Valette, G., Garcia, G., Pascal, M., Maffrand, J.P., Le Fur, G. Prog. Brain Res. (2002) [Pubmed]
  47. Relationship between adrenomedullin and vasopressin-aquaporin system under general anesthesia. Ogura, T., Morita, K., Takeuchi, M., Otsuka, F., Iwasaki, T., Oe, K., Matsuura, K., Tobe, K., Mimura, Y., Kishida, M., Makino, H., Hirakawa, M. Horm. Res. (2003) [Pubmed]
  48. Molecular pharmacology and modeling of vasopressin receptors. Thibonnier, M., Coles, P., Thibonnier, A., Shoham, M. Prog. Brain Res. (2002) [Pubmed]
 
WikiGenes - Universities