The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Auditory Cortex

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Auditory Cortex


Psychiatry related information on Auditory Cortex


High impact information on Auditory Cortex

  • In the primary auditory cortex (AI) dopamine release has been observed during auditory learning that remodels the sound-frequency representations [11].
  • The auditory stimulus, which consisted of a monaurally presented factual story caused an increase in glucose metabolism in the auditory cortex in the hemisphere contralateral to the stimulated ear [12].
  • Auditory cortex cheers the overture and listens through the finale [13].
  • This study provides in vivo evidence that experience-dependent plasticity, evident in hemodynamic changes in human auditory cortex, is modulated by acetylcholine [14].
  • Thus, altered stimulation of nAChRs by CNE during week 2, but not before or after, disrupts the development of glutamate synapses in rat auditory cortex [15].

Chemical compound and disease context of Auditory Cortex

  • RESULTS: Glucose metabolism in the auditory cortex of tinnitus patients was asymmetric between the left and right auditory cortices, with that of the left being much higher than that of the right [16].

Biological context of Auditory Cortex

  • Feature-specific stimulus discrimination related to short-term auditory sensory memory can be studied electrophysiologically using a specific event-related potential (ERP) component termed mismatch negativity (MMN), which is generated in the auditory cortex, indexing automatic comparison of the existing memory trace to incoming novel stimuli [17].
  • OBJECTIVE: To study activity of auditory cortex reflected by the N100 and P200 components of the auditory evoked potentials during memorization and scanning of short-term memory stores [18].
  • Neuroplasticity of auditory cortex after stape surgery for otosclerosis: a magnetoencephalographic study [19].
  • We analysed the differentiation and areal distribution of Cajal-Retzius (C-R) cells in the human auditory cortex using acetylcholinesterase (AChE) technique on specimens ranging between 10 weeks of gestation (w.) and the 3rd postnatal month [20].

Anatomical context of Auditory Cortex


Associations of Auditory Cortex with chemical compounds

  • Kainic acid lesions of the dorsal nucleus of the lateral lemniscus: effects on binaural evoked responses in rat auditory cortex [26].
  • While studying single trial variability and state-dependent modulation of evoked responses in auditory cortex of ketamine/xylazine-anesthetized rats, we have observed an apparent violation of this model [27].
  • OXO-induced LCGU increases were not influenced by methylatropine (1 mg/kg, s.c.) but were antagonized completely by scopolamine (2.5 mg/kg, i.p.). Scopolamine reduced LCGU in layer IV of the auditory cortex and in the retrosplenial cortex [28].
  • In contrast, the imagery condition elicited bilateral hemodynamic responses only in the secondary auditory cortex (including the planum temporale) [29].
  • CS animals demonstrated significantly greater, fear-enhanced increases in CBF-TR in auditory cortex than controls [30].

Gene context of Auditory Cortex


Analytical, diagnostic and therapeutic context of Auditory Cortex


  1. Ischemia-induced accumulation of extracellular amino acids in cerebral cortex, white matter, and cerebrospinal fluid. Shimada, N., Graf, R., Rosner, G., Heiss, W.D. J. Neurochem. (1993) [Pubmed]
  2. Neural substrates for tone-conditioned bradycardia demonstrated with 2-deoxyglucose. II. Auditory cortex plasticity. Gonzalez-Lima, F., Scheich, H. Behav. Brain Res. (1986) [Pubmed]
  3. Long-lasting changes in the density of nitrergic neurons following kainic acid administration and chronic hypoxia. Benesová, P., Langmeier, M., Betka, J., Trojan, S. Physiological research / Academia Scientiarum Bohemoslovaca. (2005) [Pubmed]
  4. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Noreña, A.J., Eggermont, J.J. Hear. Res. (2003) [Pubmed]
  5. Effects of an acute acoustic trauma on the representation of a voice onset time continuum in cat primary auditory cortex. Tomita, M., Noreña, A.J., Eggermont, J.J. Hear. Res. (2004) [Pubmed]
  6. An investigation of the role of auditory cortex in sound localization using muscimol-releasing Elvax. Smith, A.L., Parsons, C.H., Lanyon, R.G., Bizley, J.K., Akerman, C.J., Baker, G.E., Dempster, A.C., Thompson, I.D., King, A.J. Eur. J. Neurosci. (2004) [Pubmed]
  7. Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Diamond, D.M., Weinberger, N.M. Behav. Neurosci. (1989) [Pubmed]
  8. Spectro-temporal processing during speech perception involves left posterior auditory cortex. Meyer, M., Zaehle, T., Gountouna, V.E., Barron, A., Jancke, L., Turk, A. Neuroreport (2005) [Pubmed]
  9. Short-term functional plasticity in the human auditory cortex: an fMRI study. Jäncke, L., Gaab, N., Wüstenberg, T., Scheich, H., Heinze, H.J. Brain research. Cognitive brain research. (2001) [Pubmed]
  10. Complex sound processing during human REM sleep by recovering information from long-term memory as revealed by the mismatch negativity (MMN). Atienza, M., Cantero, J.L. Brain Res. (2001) [Pubmed]
  11. Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Bao, S., Chan, V.T., Merzenich, M.M. Nature (2001) [Pubmed]
  12. Metabolic mapping of functional activity in human subjects with the [18F]fluorodeoxyglucose technique. Greenberg, J.H., Reivich, M., Alavi, A., Hand, P., Rosenquist, A., Rintelmann, W., Stein, A., Tusa, R., Dann, R., Christman, D., Fowler, J., MacGregor, B., Wolf, A. Science (1981) [Pubmed]
  13. Auditory cortex cheers the overture and listens through the finale. Middlebrooks, J.C. Nat. Neurosci. (2005) [Pubmed]
  14. Cholinergic modulation of experience-dependent plasticity in human auditory cortex. Thiel, C.M., Friston, K.J., Dolan, R.J. Neuron (2002) [Pubmed]
  15. A critical period for nicotine-induced disruption of synaptic development in rat auditory cortex. Aramakis, V.B., Hsieh, C.Y., Leslie, F.M., Metherate, R. J. Neurosci. (2000) [Pubmed]
  16. Regional glucose metabolic increases in left auditory cortex in tinnitus patients: a preliminary study with positron emission tomography. Wang, H., Tian, J., Yin, D., Jiang, S., Yang, W., Han, D., Yao, S., Shao, M. Chin. Med. J. (2001) [Pubmed]
  17. Impaired temporal lobe processing of preattentive auditory discrimination in schizophrenia. Pekkonen, E., Katila, H., Ahveninen, J., Karhu, J., Huotilainen, M., Tiihonen, J. Schizophrenia bulletin. (2002) [Pubmed]
  18. The N100 auditory cortical evoked potential indexes scanning of auditory short-term memory. Conley, E.M., Michalewski, H.J., Starr, A. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. (1999) [Pubmed]
  19. Neuroplasticity of auditory cortex after stape surgery for otosclerosis: a magnetoencephalographic study. de Campora, E., Bicciolo, G., Tecchio, F., Rossini, P.M. Acta otorhinolaryngologica Italica : organo ufficiale della Società italiana di otorinolaringologia e chirurgia cervico-facciale. (2003) [Pubmed]
  20. Development of Cajal-Retzius cells in the human auditory cortex. Krmpotić-Nemanić, J., Kostović, I., Vidić, Z., Nemanić, D., Kostović-Knezević, L. Acta Otolaryngol. (1987) [Pubmed]
  21. A common cortical substrate activated by horizontal and vertical sound movement in the human brain. Pavani, F., Macaluso, E., Warren, J.D., Driver, J., Griffiths, T.D. Curr. Biol. (2002) [Pubmed]
  22. Cochlear dysfunction in IDDM patients with subclinical peripheral neuropathy. Di Leo, M.A., Di Nardo, W., Cercone, S., Ciervo, A., Lo Monaco, M., Greco, A.V., Paludetti, G., Ghirlanda, G. Diabetes Care (1997) [Pubmed]
  23. Projections from the medial geniculate body to primary auditory cortex in neonatally deafened cats. Stanton, S.G., Harrison, R.V. J. Comp. Neurol. (2000) [Pubmed]
  24. Modification of auditory and somatosensory system activity during pupillary conditioning in the paralyzed cat. Oleson, T.D., Ashe, J.H., Weinberger, N.M. J. Neurophysiol. (1975) [Pubmed]
  25. Populations of GABAergic neurons and axons in layer I of rat auditory cortex. Winer, J.A., Larue, D.T. Neuroscience (1989) [Pubmed]
  26. Kainic acid lesions of the dorsal nucleus of the lateral lemniscus: effects on binaural evoked responses in rat auditory cortex. Glenn, S.L., Kelly, J.B. J. Neurosci. (1992) [Pubmed]
  27. Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex. Kisley, M.A., Gerstein, G.L. J. Neurosci. (1999) [Pubmed]
  28. Effects of oxotremorine on local glucose utilization in the rat cerebral cortex. Dam, M., Wamsley, J.K., Rapoport, S.I., London, E.D. J. Neurosci. (1982) [Pubmed]
  29. Scanning silence: mental imagery of complex sounds. Bunzeck, N., Wuestenberg, T., Lutz, K., Heinze, H.J., Jancke, L. Neuroimage (2005) [Pubmed]
  30. Mapping cerebral blood flow changes during auditory-cued conditioned fear in the nontethered, nonrestrained rat. Holschneider, D.P., Yang, J., Sadler, T.R., Nguyen, P.T., Givrad, T.K., Maarek, J.M. Neuroimage (2006) [Pubmed]
  31. Early chronic blockade of NR2B subunits and transient activation of NMDA receptors modulate LTP in mouse auditory cortex. Mao, Y., Zang, S., Zhang, J., Sun, X. Brain Res. (2006) [Pubmed]
  32. Postnatal development of NR2A and NR2B mRNA expression in rat auditory cortex and thalamus. Hsieh, C.Y., Chen, Y., Leslie, F.M., Metherate, R. J. Assoc. Res. Otolaryngol. (2002) [Pubmed]
  33. Parvalbumin and calbindin are differentially distributed within primary and secondary subregions of the mouse auditory forebrain. Cruikshank, S.J., Killackey, H.P., Metherate, R. Neuroscience (2001) [Pubmed]
  34. Long-term cortical plasticity evoked by electric stimulation and acetylcholine applied to the auditory cortex. Ma, X., Suga, N. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  35. Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm. Liebenthal, E., Ellingson, M.L., Spanaki, M.V., Prieto, T.E., Ropella, K.M., Binder, J.R. Neuroimage (2003) [Pubmed]
  36. Tone responses in core versus belt auditory cortex in the developing chinchilla. Pienkowski, M., Harrison, R.V. J. Comp. Neurol. (2005) [Pubmed]
  37. Long delay lines for ranging are created by inhibition in the inferior colliculus of the mustached bat. Saitoh, I., Suga, N. J. Neurophysiol. (1995) [Pubmed]
  38. Functional cerebral asymmetries of pitch processing during dichotic stimulus application: a whole-head magnetoencephalography study. Mathiak, K., Hertrich, I., Lutzenberger, W., Ackermann, H. Neuropsychologia. (2002) [Pubmed]
WikiGenes - Universities