The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Renilla

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Renilla

 

High impact information on Renilla

  • Coelenterazine is widely distributed among marine organisms, producing bioluminescence by calcium-insensitive oxidation mediated by Renilla luciferase (Rluc) and calcium-dependent oxidation mediated by the photoprotein aequorin [6].
  • Receptor stimulation with the hydrophilic agonist isoproterenol led to an increase in the transfer of energy between beta(2)AR molecules genetically fused to the BRET donor (Renilla luciferase) and acceptor (green fluorescent protein), respectively, indicating that the agonist interacts with receptor dimers at the cell surface [7].
  • Bioluminescence in Renilla results from the oxidation of coelenterate luciferin (coelenterazine) by luciferase [Renilla-luciferin:oxygen 2-oxidoreductase (decarboxylating), EC 1.13.12.5] [8].
  • In this study, we used split synthetic renilla luciferase (hRLUC) protein fragment-assisted complementation to evaluate heterodimerization of the human proteins FRB and FKBP12 mediated by the small molecule rapamycin [9].
  • We investigated the effect of interferon alfa (IFN-alpha) on the IRES-directed translation of HCV, using two stably transformed cell lines, RCF-1 and RCF-26, of Huh7 cells derived from human hepatocellular carcinoma that express dicistronic reporter proteins, Renilla luciferase (RL) and firefly luciferase (FL), separated by HCV-IRES [10].
 

Biological context of Renilla

  • We have combined a reporter gene with various portions of this putative PS-1 promoter and measured firefly luciferase activity relative to an internal renilla luciferase standard [11].
  • We prepared tagged constructs expressing Renilla reniformis luciferase, yellow fluorescent protein, or cyan fluorescent protein at the carboxyl terminus of VPAC1, VPAC2, and secretin receptors, and performed BRET and morphologic fluorescence resonance energy transfer (FRET) studies with all combinations [12].
  • Dual reporter genes, encoding Renilla luciferase (Rluc) and neomycin phosphotransferase (Neo), were engineered into a WNV subgenomic replicon, resulting in Rluc/NeoRep [13].
  • Transfection of HER2-overexpressing cells with a construct containing the 5' untranslated region (5'UTR) of c-Myc mRNA originated from the P2 promoter and placed upstream of the Renilla luciferase gene, enhanced reporter expression upon stimulation with HRG [14].
  • Quantitative analysis of constructs containing human TPI intron 6 at two different positions within the Renilla luciferase open reading frame revealed that this intron acts primarily to enhance mRNA accumulation [15].
 

Anatomical context of Renilla

 

Associations of Renilla with chemical compounds

  • The gene was expressed as apoaequorin and, by using luciferin isolated from Renilla reniformis, its activity was found essentially identical to native aequorin [21].
  • The amino acid composition of the octopus calmodulin is similar to that of another sea invertebrate calmodulin, from Renilla reniformis, in that both contain a single residue of tyrosine which distinguishes them from the vertebrate calmodulins which contain two tyrosines [22].
  • The rat muscarinic acetylcholine receptor subtype 3 was modified by swapping the third intracellular loop with the corresponding region of a constitutively active mutant human beta2-adrenergic receptor and attaching Renilla reniformis luciferase to its C terminus [23].
  • Primary structure of the precursor for the anthozoan neuropeptide antho-RFamide from Renilla köllikeri: evidence for unusual processing enzymes [24].
  • At substimulatory glucose concentrations (3 mM) secretion of sp.B.C.A.myc.[Luc] could not be detected (rate of release into the medium identical with that of the cytosolic Renilla reniformis luciferase), indicating that the chimaera did not enter the constitutive secretory pathway [25].
 

Gene context of Renilla

  • In the first assay, human IGF1R fused to Renilla reniformis luciferase (Rluc) or yellow fluorescent protein (YFP) were cotransfected in human embryonic kidney (HEK)-293 cells [26].
  • Tyrosine hydroxylase and dopamine-beta-hydroxylase immunoreactivities in the cnidarian Renilla koellikeri [18].
  • Insertion of the E6 region between Renilla and firefly luciferase genes revealed little or no internal ribosomal entry site activity [27].
  • This split Renilla luciferase complementation readout was shown to work for locating a PPI between the tyrosine-phosphorylated peptide (Y941) of IRS-1 and the SH2 domain of PI3K among insulin signaling pathways in living Chinese hamster ovary cells overexpressing human insulin receptors (CHO-HIR) [28].
  • Purified RGS2 selectively bound to the third intracellular loop of the beta2AR in GST pulldown assays, and a BRET signal was observed between GFP-RGS2 and beta2AR fused to Renilla luciferase when these two proteins were co-expressed together with either ACIV or ACVI [29].
 

Analytical, diagnostic and therapeutic context of Renilla

References

  1. Mutational analysis of the varicella-zoster virus ORF62/63 intergenic region. Jones, J.O., Sommer, M., Stamatis, S., Arvin, A.M. J. Virol. (2006) [Pubmed]
  2. Effect of GGC (glycine) repeat length polymorphism in the human androgen receptor on androgen action. Ding, D., Xu, L., Menon, M., Reddy, G.P., Barrack, E.R. Prostate (2005) [Pubmed]
  3. Differential transcriptional regulation by the alpha- and gamma-catalytic subunit isoforms of cAMP-dependent protein kinase. Morris, R.C., Morris, G.Z., Zhang, W., Gellerman, M., Beebe, S.J. Arch. Biochem. Biophys. (2002) [Pubmed]
  4. Excitatory action of the native neuropeptide antho-rfamide on muscles in the pennatulid Renilla köllikeri. Anctil, M., Grimmelikhuijzen, C.J. Gen. Pharmacol. (1989) [Pubmed]
  5. Bioluminescent molecular imaging of endogenous and exogenous p53-mediated transcription in vitro and in vivo using an HCT116 human colon carcinoma xenograft model. Wang, W., El-Deiry, W.S. Cancer Biol. Ther. (2003) [Pubmed]
  6. Imaging reversal of multidrug resistance in living mice with bioluminescence: MDR1 P-glycoprotein transports coelenterazine. Pichler, A., Prior, J.L., Piwnica-Worms, D. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  7. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Angers, S., Salahpour, A., Joly, E., Hilairet, S., Chelsky, D., Dennis, M., Bouvier, M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  8. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Lorenz, W.W., McCann, R.O., Longiaru, M., Cormier, M.J. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  9. Molecular imaging of drug-modulated protein-protein interactions in living subjects. Paulmurugan, R., Massoud, T.F., Huang, J., Gambhir, S.S. Cancer Res. (2004) [Pubmed]
  10. Inhibition of internal ribosomal entry site-directed translation of HCV by recombinant IFN-alpha correlates with a reduced La protein. Shimazaki, T., Honda, M., Kaneko, S., Kobayashi, K. Hepatology (2002) [Pubmed]
  11. Transcriptional regulation of the mouse presenilin-1 gene. Mitsuda, N., Roses, A.D., Vitek, M.P. J. Biol. Chem. (1997) [Pubmed]
  12. Constitutive formation of oligomeric complexes between family B G protein-coupled vasoactive intestinal polypeptide and secretin receptors. Harikumar, K.G., Morfis, M.M., Lisenbee, C.S., Sexton, P.M., Miller, L.J. Mol. Pharmacol. (2006) [Pubmed]
  13. Potential high-throughput assay for screening inhibitors of West Nile virus replication. Lo, M.K., Tilgner, M., Shi, P.Y. J. Virol. (2003) [Pubmed]
  14. HER2 signaling enhances 5'UTR-mediated translation of c-Myc mRNA. Galmozzi, E., Casalini, P., Iorio, M.V., Casati, B., Olgiati, C., Ménard, S. J. Cell. Physiol. (2004) [Pubmed]
  15. A quantitative analysis of intron effects on mammalian gene expression. Nott, A., Meislin, S.H., Moore, M.J. RNA (2003) [Pubmed]
  16. Transgene expression after stable transfer of a mammalian artificial chromosome into human hematopoietic cells. Vanderbyl, S.L., Sullenbarger, B., White, N., Perez, C.F., MacDonald, G.N., Stodola, T., Bunnell, B.A., Ledebur, H.C., Lasky, L.C. Exp. Hematol. (2005) [Pubmed]
  17. FMDV-2A sequence and protein arrangement contribute to functionality of CYP2B1-reporter fusion protein. Lengler, J., Holzmüller, H., Salmons, B., Günzburg, W.H., Renner, M. Anal. Biochem. (2005) [Pubmed]
  18. Tyrosine hydroxylase and dopamine-beta-hydroxylase immunoreactivities in the cnidarian Renilla koellikeri. Anctil, M., Hurtubise, P., Gillis, M.A. Cell Tissue Res. (2002) [Pubmed]
  19. Simultaneous, bidirectional inhibitory crosstalk between PPAR and STAT5b. Shipley, J.M., Waxman, D.J. Toxicol. Appl. Pharmacol. (2004) [Pubmed]
  20. Activity of estradiol and selective estrogen receptor modulators in the mouse N20.1 oligodendrocyte/astrocytes cell line. Guzmán, C.B., Deighton-Collins, S., Martinez, A., Kleerekoper, M., Zhao, C., Benjamins, J.A., Skafar, D.F. Neuro Endocrinol. Lett. (2005) [Pubmed]
  21. Expression and secretion of aequorin as a chimeric antibody by means of a mammalian expression vector. Casadei, J., Powell, M.J., Kenten, J.H. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  22. Octopus calmodulin. Structural comparison with bovine brain calmodulin. Seamon, K.B., Moore, B.W. J. Biol. Chem. (1980) [Pubmed]
  23. Ligand specific up-regulation of a Renilla reniformis luciferase-tagged, structurally unstable muscarinic M3 chimeric G protein-coupled receptor. Zeng, F.Y., McLean, A.J., Milligan, G., Lerner, M., Chalmers, D.T., Behan, D.P. Mol. Pharmacol. (2003) [Pubmed]
  24. Primary structure of the precursor for the anthozoan neuropeptide antho-RFamide from Renilla köllikeri: evidence for unusual processing enzymes. Reinscheid, R.K., Grimmelikhuijzen, C.J. J. Neurochem. (1994) [Pubmed]
  25. Insulin targeting to the regulated secretory pathway after fusion with green fluorescent protein and firefly luciferase. Pouli, A.E., Kennedy, H.J., Schofield, J.G., Rutter, G.A. Biochem. J. (1998) [Pubmed]
  26. Monitoring the activation state of the insulin-like growth factor-1 receptor and its interaction with protein tyrosine phosphatase 1B using bioluminescence resonance energy transfer. Blanquart, C., Boute, N., Lacasa, D., Issad, T. Mol. Pharmacol. (2005) [Pubmed]
  27. Leaky scanning is the predominant mechanism for translation of human papillomavirus type 16 E7 oncoprotein from E6/E7 bicistronic mRNA. Stacey, S.N., Jordan, D., Williamson, A.J., Brown, M., Coote, J.H., Arrand, J.R. J. Virol. (2000) [Pubmed]
  28. Locating a protein-protein interaction in living cells via split Renilla luciferase complementation. Kaihara, A., Kawai, Y., Sato, M., Ozawa, T., Umezawa, Y. Anal. Chem. (2003) [Pubmed]
  29. RGS2 interacts with Gs and adenylyl cyclase in living cells. Roy, A.A., Baragli, A., Bernstein, L.S., Hepler, J.R., Hébert, T.E., Chidiac, P. Cell. Signal. (2006) [Pubmed]
  30. Melatonin in a primitive metazoan: seasonal changes of levels and immunohistochemical visualization in neurons. Mechawar, N., Anctil, M. J. Comp. Neurol. (1997) [Pubmed]
  31. Distribution of beta 2-like adrenergic receptors in the cnidarian Renilla koellikeri as revealed by autoradiography and in situ hybridization. Awad, E.W., Anctil, M. Cell Tissue Res. (1994) [Pubmed]
  32. Noninvasive of adenovirus tumor retargeting in living subjects by a soluble adenovirus receptor-epidermal growth factor (sCAR-EGF) fusion protein. Liang, Q., Dmitriev, I., Kashentseva, E., Curiel, D.T., Herschman, H.R. Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging. (2004) [Pubmed]
 
WikiGenes - Universities