The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Positive-Pressure Respiration

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Positive-Pressure Respiration

 

High impact information on Positive-Pressure Respiration

 

Chemical compound and disease context of Positive-Pressure Respiration

 

Biological context of Positive-Pressure Respiration

 

Anatomical context of Positive-Pressure Respiration

 

Associations of Positive-Pressure Respiration with chemical compounds

 

Gene context of Positive-Pressure Respiration

 

Analytical, diagnostic and therapeutic context of Positive-Pressure Respiration

References

  1. Use of transcutaneous oxygen sensors to titrate PEEP. Tremper, K.K., Waxman, K., Shoemaker, W.C. Ann. Surg. (1981) [Pubmed]
  2. Right heart catheterization in acute lung injury: an observational study. Marinelli, W.A., Weinert, C.R., Gross, C.R., Knoedler, J.P., Bury, C.L., Kangas, J.R., Leatherman, J.W. Am. J. Respir. Crit. Care Med. (1999) [Pubmed]
  3. Neither dopamine nor dobutamine corrects mesenteric blood flow depression caused by positive end-expiratory pressure in a rat model of acute lung injury. Lee, R.D., Choe, E., Flint, L., Steinberg, S. Crit. Care Med. (1998) [Pubmed]
  4. Effect of graded administration of PEEP on lung water in noncardiogenic pulmonary edema. Saul, G.M., Feeley, T.W., Mihm, F.G. Crit. Care Med. (1982) [Pubmed]
  5. Therapeutic hypercapnia is not protective in the in vivo surfactant-depleted rabbit lung. Rai, S., Engelberts, D., Laffey, J.G., Frevert, C., Kajikawa, O., Martin, T.R., Post, M., Kavanagh, B.P. Pediatr. Res. (2004) [Pubmed]
  6. Dose-response effect of perfluorocarbon administration on lung microvascular permeability in rats. Ricard, J.D., Dreyfuss, D., Laissy, J.P., Saumon, G. Am. J. Respir. Crit. Care Med. (2003) [Pubmed]
  7. Effects of inverse ratio ventilation and positive end-expiratory pressure in oleic acid-induced lung injury. Neumann, P., Berglund, J.E., Andersson, L.G., Maripu, E., Magnusson, A., Hedenstierna, G. Am. J. Respir. Crit. Care Med. (2000) [Pubmed]
  8. Expiratory phase tracheal gas insufflation and pressure control in sheep with permissive hypercapnia. Imanaka, H., Kirmse, M., Mang, H., Hess, D., Kacmarek, R.M. Am. J. Respir. Crit. Care Med. (1999) [Pubmed]
  9. Procollagen types I and III aminoterminal propeptide levels during acute respiratory distress syndrome and in response to methylprednisolone treatment. Meduri, G.U., Tolley, E.A., Chinn, A., Stentz, F., Postlethwaite, A. Am. J. Respir. Crit. Care Med. (1998) [Pubmed]
  10. Respiratory response to CO2 during pressure-support ventilation in conscious normal humans. Georgopoulos, D., Mitrouska, I., Bshouty, Z., Webster, K., Patakas, D., Younes, M. Am. J. Respir. Crit. Care Med. (1997) [Pubmed]
  11. Cardiovascular adjustments to pulmonary vascular injury in dogs. Qvist, J., Mygind, T., Crottogini, A., Jordening, H., Mogensen, T., Dorph, S., Laver, M.B. Anesthesiology (1988) [Pubmed]
  12. Acute lung injury after peppermint oil injection. Behrends, M., Beiderlinden, M., Peters, J. Anesth. Analg. (2005) [Pubmed]
  13. Acute response of the lung mechanics of the rabbit to hypoxia. Sakai, H., Fukui, M., Nakano, Y., Endo, K., Hirai, T., Oku, Y., Mishima, M. J. Appl. Physiol. (1999) [Pubmed]
  14. Radioimmunoassayable plasma vasopressin associated with surgery. Haas, M., Glick, S.M. Archives of surgery (Chicago, Ill. : 1960) (1978) [Pubmed]
  15. Effect of inhaled nitric oxide on pulmonary function after sepsis in a swine model. Ogura, H., Cioffi, W.G., Offner, P.J., Jordan, B.S., Johnson, A.A., Pruitt, B.A. Surgery (1994) [Pubmed]
  16. Hemodynamic responses to mechanical ventilation with PEEP: the effect of hypervolemia. Qvist, J., Pontoppidan, H., Wilson, R.S., Lowenstein, E., Laver, M.B. Anesthesiology (1975) [Pubmed]
  17. The use of dopamine to correct the reduced cardiac output resulting from positive end-expiratory pressure. A two-edged sword. Berk, J.L., Hagen, J.F., Tong, R.K., Maly, G. Crit. Care Med. (1977) [Pubmed]
  18. Extracellular volume expansion inhibits antidiuretic hormone increase during positive end-expiratory pressure in conscious dogs. Kaczmarczyk, G., Jörres, D., Rossaint, R., Krebs, M., Unger, V., Falke, K. Clin. Sci. (1993) [Pubmed]
  19. Effects of PEEP on pulmonary hemodynamics in intact dogs with oleic acid pulmonary edema. Leeman, M., Lejeune, P., Closset, J., Vachiéry, J.L., Mélot, C., Naeije, R. J. Appl. Physiol. (1990) [Pubmed]
  20. Effects of isoprenaline on the responses of slowly adapting pulmonary stretch receptors to reduced lung compliance and to administered histamine. Matsumoto, S., Shimizu, T. Neurosci. Lett. (1994) [Pubmed]
  21. Anesthesia and chest wall function in dogs. Warner, D.O., Joyner, M.J., Ritman, E.L. J. Appl. Physiol. (1994) [Pubmed]
  22. Responses of upper-airway dilating muscles and diaphragm activity to end-expiratory pressure loading in anesthetized dogs. Haxhiu, M.A., van Lunteren, E., Cherniack, N.S. Respiration; international review of thoracic diseases. (1989) [Pubmed]
  23. Effects of PEEP on acinar gas transfer in healthy and lung-injured dogs. Barnas, G.M., Donahue, P.L., Kong, C.S., Ryder, I.G., Choi, D.H., Hoff, B.H., Mackenzie, C.F. Am. J. Respir. Crit. Care Med. (1995) [Pubmed]
  24. Bronchodilator delivery by metered-dose inhaler in ventilator-supported patients. Dhand, R., Jubran, A., Tobin, M.J. Am. J. Respir. Crit. Care Med. (1995) [Pubmed]
  25. Effect of external negative pressure on pulmonary 99mTc-DTPA clearance in humans. Suzuki, Y., Kanazawa, M., Fujishima, S., Ishizaka, A., Kubo, A. Am. J. Respir. Crit. Care Med. (1995) [Pubmed]
  26. Comparison of PET with radioactive microspheres to assess pulmonary blood flow. Richard, J.C., Janier, M., Decailliot, F., Le Bars, D., Lavenne, F., Berthier, V., Lionnet, M., Cinotti, L., Annat, G., Guérin, C. J. Nucl. Med. (2002) [Pubmed]
  27. Initial experience with the modified extracorporeal liver-assist device for patients with fulminant hepatic failure: system modifications and clinical impact. Millis, J.M., Cronin, D.C., Johnson, R., Conjeevaram, H., Conlin, C., Trevino, S., Maguire, P. Transplantation (2002) [Pubmed]
  28. Surfactant protein-B supplementation improves in vivo function of a modified natural surfactant. Mizuno, K., Ikegami, M., Chen, C.M., Ueda, T., Jobe, A.H. Pediatr. Res. (1995) [Pubmed]
  29. Lung function, surfactant apoprotein content, and level of PEEP in prematurely delivered rabbits. Ogawa, A., Brown, C.L., Schlueter, M.A., Benson, B.J., Clements, J.A., Hawgood, S. J. Appl. Physiol. (1994) [Pubmed]
  30. Effect of end-inspiratory pause duration on plateau pressure in mechanically ventilated patients. Barberis, L., Manno, E., Guérin, C. Intensive care medicine. (2003) [Pubmed]
  31. Atrial natriuretic peptide release in response to different positive end-expiratory pressure levels. Frass, M., Watschinger, B., Traindl, O., Popovic, R., Podolsky, A., Gisslinger, H., Falger, S., Goldin, M., Schuster, E., Leithner, C. Crit. Care Med. (1993) [Pubmed]
  32. In vitro and in vivo intrapulmonary distribution of fluorescently labeled surfactant. Diemel, R.V., Walch, M., Haagsman, H.P., Putz, G. Crit. Care Med. (2002) [Pubmed]
  33. Treatment of cardiac and renal effects of PEEP with dopamine in patients with acute respiratory failure. Hemmer, M., Suter, P.M. Anesthesiology (1979) [Pubmed]
  34. Purine in bronchoalveolar lavage fluid as a marker of ventilation-induced lung injury. Verbrugge, S.J., de Jong, J.W., Keijzer, E., Vazquez de Anda, G., Lachmann, B. Crit. Care Med. (1999) [Pubmed]
  35. Lobar contribution to VA/Q inequality during constant-flow ventilation. Schumacker, P.T., Solway, J., Wood, L.D., Sznajder, J.I. J. Appl. Physiol. (1988) [Pubmed]
  36. The effects of inverse ratio ventilation on intracranial pressure: a preliminary report. Clarke, J.P. Intensive care medicine. (1997) [Pubmed]
  37. The effects of graded administration of positive end expiratory pressure on the fluid filtration rate in isolated rabbit lungs, using normal lungs, hydrostatic oedema lungs and oleic acid induced oedema. Zabner, J., Angeli, L.S., Martinez, R.R., Sánchez de León, R. Intensive care medicine. (1990) [Pubmed]
 
WikiGenes - Universities